

第一届"粤港澳"核物理论坛 广东 珠海,2022年7月2-6日

月球及行星辐射环境研究

张小平

xpzhang@must.edu.mo

澳门科技大学月球与行星科学国家重点实验室

提纲

- 1. 研究背景介绍
- 2. 空间粒子的时空变化特征
- 3. 宇宙线与月球及火星表面相互作用
- 4. 结论

Energetic Particles in the Heliosphere

• Introduction

Radiation environment in the inner solar system:

、空间粒子的时空变化特征

Particle filling effect in the lunar wake

Guo, ZHANG et al., APJ 2016

Diamagnetic hole in the lunar wake

- \checkmark Up to 7% of the incident solar wind particles are reflected back by the magnetic anomaly region and picked up into the lunar wake (about 1% in previous observation)
- ✓ **"Diamagnetic hole"** observed for the first time as massive particles gather in lunar wake

GCR intensities in the solar minimum 24/25 (2019-2020)

- \checkmark ACE satellite: Sun-Earth L1 Lagrange point
- ✓ **Record-breaking GCR intensities since space era**
- \checkmark The peak ground-based neutron monitors (NM) count rates in 2019-2020 are lower than those in late 2009

Fu, ZHANG et al., 2021, ApJS

Variation of sunspot numbers

Fu, ZHANG et al., 2021, ApJS

Solar wind/interplanetary parameters

GCR spectra

GCR radiation dose rates on the lunar surface

- LRO/CRaTER data
- ✓ **Peak value of dose rates in the first half of 2020 is ~5% higher than that in 2009- 2010**
- \checkmark May be the highest dose rates on the lunar surface since the 1980s, raise higher requirements for radiation shielding and protection

ACR-GCR transition energy

Fu, Zhao, ZHANG et al., 2021, ApJL

Solar modulation on ACR and GCR transition energies

Fu, Zhao, ZHANG et al., 2021, ApJL 15

ACR intensities did not reach maximum in 2019-2020

ACR intensities follows more closely with HCS tilt angle

Current sheet drift may play an important role in ACR modulation (Leske et al. 2013)

First measurements of low-energy cosmic rays on the surface of the lunar farside

Luo, ZHANG et al., 2022, Science Advances

First measurements of low-energy cosmic rays on the surface of the lunar farside

Luo, ZHANG et al., 2022, Science Advances

3. 宇宙线与月球及火星表面相互作用

境迥异

Half-life ($5x10^3 - 5x10^6$ a) < Exposure age(10^7 a)

传统计算方法

In the previous work by Reedy and Arnold [1972], Masarik and Reedy [1994], Kim [2010] and Dong[2014].

传统计算方法

Effective GCR fluxes(proton $cm^{-2}s^{-1}$) for the two model used in MCNPX

 μ^{\pm}

存在的问题:模型不自洽, 不同的宇宙成因核素,所用 的入射宇宙射线通量不同。

新方法: 计入所有次级粒子的贡献

[*Agostinelli et al.*, 2003]

• Method

• **The main parameters of our model:**

 \triangleright The component of the lunar soil:

 SiO_2 (46.4%) , TiO_2 (1.83%) , $\mathrm{Al}_2\mathrm{O}_3$ (10.8%) , FeO (18.7%) , MnO (0.23%) , MgO (11.5%), CaO (8.5%), Na₂O (0.4%), K₂O (0.3%) Drived from Apollo 15 deep core [Gold et al. 1977]

 \triangleright The physicslist :

G4HadronElasticPhysicsHP G4HadronPhysicsQGSP_BIC_HP G4IonElasticPhysics G4IonBinaryCascadePhysics G4EmStandardPhysics G4DecayPhysics G4RadioactiveDecayPhysics

• Method

$$
\sum \text{ The particle source (GCR particles)}: \quad \underbrace{\text{sum}_{\substack{w \text{ is a}} \text{ is a}} \text{Differential GCR spectra :}}_{U_i(T, \Phi) = J_{LIS, i}(T + \Phi_i) \frac{T(T + 2T_r)}{(T + \Phi_i)(T + \Phi_i + T_r)}}, \quad \underbrace{\text{sum}_{\substack{w \text{ is a}} \text{ is a}} \text{log} \text{ linearly in } \text{Recall}}_{U_{i=1}^{\text{max}} \text{ linearly in } \text{Recall}} \text{ where } \text{sum}_{\substack{w \text{ is a}} \text{ is a a}} \text{ linearly in } \text{Recall} \text{ linearly in } \text{Recall}} \text{ where } \text{sum}_{\substack{w \text{ is a}} \text{ is a a}} \text{ linearly in } \text{Recall} \text{ linearly in } \text{Recall}} \text{ where } \text{max} \text{ is a a b b c d d d d } \text{ linearly in } \text{Recall} \text
$$

protons $\phi = 0.30$ GV $\phi = 0.55$ GV α -particles $\phi = 1.00$ GV 10 100 Energy (GeV/nucleon)

10 5 F

of proton fluxes and *α* particles different modulation parameters

J: differential intensity of the flux [particles/ $(cm² sr s GeV/nucleon)]$ T :kinetic energy per nucleon [GeV/nucleon] $\boldsymbol{\mathsf{J}}_{\mathsf{LIT},\mathsf{p}}$: the local interstellar spectrum.

 $\Phi_i = (Z_i e / A_i) \phi$, ϕ *is the solar modulation potential* [MV], **In our model:** $\phi = 0.55$ GV **At this time, the integral (0.01–100 GeV/nucleon) 4π GCR fluxes of the proton and alpha particles are 3.498 and 0.339 per cm² per second, respectively.**

➢ The particle source (SCR particles) :

$$
\frac{dJ}{dR} = k e^{\frac{R}{R_0}}, \qquad \text{[Nishizumi et al., 2009; Reedy and Arnold, 1972]}
$$

$$
\frac{dJ}{dE_p} = g \, \frac{E_p + m_p c^2}{(E_p^2 + 2m_p c^2 E_p)^{0.5}} e^{\frac{(E_p^2 + 2m_p c^2 E_p)^{0.5}}{R_0}},
$$

J: the flux of SCR, *R:* the rigidity (*pc/Ze*) of the particles, R_0 :is a spectral shape parameter[MV], k: is a constant.

The average value $R_0 = 80$ MV during the last 5 solar cycles (1954 – 2008), and 4π flux *J* (E_{*P*} > 10 MeV) = 134 cm⁻²s⁻¹ at 1 AU from the Sun and gave. *Reedy* [2012]

• Results

1. The flux of neutrons, protons, π^+ , π^- in the lunar sample calculated by Geant4

2. The cross-sections of π -nuclear reactions calculated by Geant4.

不同反应过程对宇宙成因核素产生率的贡献

Table 2. The contributions of different processes to the production rates of the cosmogenic nuclides. All values are given in percentage.

^aThere are some other processes to produce the cosmogenic nuclides, such as: (K^+, x) , (K^0, x) , (K^-, x) , $(^{3}H, x)$ and $(^{3}He, x)$.

Li, ZHANG et al., JGR 2017

3. The production rates of the cosmogenic nuclides

 \triangleright ⁵³Mn, ⁴¹Ca and ³⁶Cl

The simulation results and the experimental data of the production rates of 53 Mn, 41 Ca and 36 Cl in Apollo 15 Drill Core

➢ ²⁶Al (反应截面优化)

 \triangleright 26Al

The simulation results and the experimental data of the production rates of ²⁶Al in Apollo 15 Drill Core

The excitation functions of the reactions O (n, x) ^{14}C , Si (n, x) ^{14}C , O(p, x) ¹⁴C, O (n, x) ¹⁰Be, Si (n, x) ¹⁰Be, O (p, x) ¹⁰Be, Mg (p, x) ¹⁰Be, Al (p, x) ¹⁰Be and Si (p, x) ¹⁰Be

\triangleright ¹⁴C and ¹⁰Be

The simulation results and measured data of the production rates of 10 Be and 14 C

\triangleright The sum effects of GCR and SCR.

The simulation results of the total ²⁶Al production rates from GCRs and SCRs reactions and the measured data

The simulation results of the total ¹⁴C production rates from GCRs and SCRs reactions and the measured data

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Spallation, cosmic rays, meteorites, and planetology

J.-C. David a^* , I. Leya \overline{b}

^a IRFU, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France ^b Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

interest. All were implemented into the INCL4.6 code (and so INCL++) as described in detail in [123,348,394]. It has been shown that it is now possible to reliably calculate contributions from α -induced reactions.

When the incident energy increases, not only the number of secondary π 's increases but also their kinetic energies, resulting in higher cosmogenic production rates due to the π 's. This topic has recently been investigated by Li et al. [395] using simulations of cosmogenic nuclides on the Moon, calculated using the Geant4 transport code. The secondary π -spectra never exceeded 5 GeV, therefore the Bertini model was used for the π 's and the BIC code treated the nucleons. The results for ¹⁰Be and ¹⁴C were surprising, about 20% of their production comes from π 's! For ²⁶Al, ³⁶Cl, and ⁵³Mn the contributions are \sim 5%. Though, this is within the range of typical uncertainties, it is nevertheless important for studies on model reliabilities and uncertainties. Although some uncertainties still exist, it is obvious that π 's can play an important role for cosmogenic nuclide studies. On the same topic, some particular reactions induced by energetic neutrons must be considered very carefully. As previously discussed, major efforts have been done determining the neutron-induced production cross sections. Since few measurements are available, the method developed in [56], i.e., unfolding thick target

A&A 618, A96 (2018) https://doi.org/10.1051/0004-6361/201833561 © ESO 2018

Solar energetic particles and galactic cosmic rays over millions of years as inferred from data on cosmogenic ²⁶Al in lunar samples

S. Poluianov^{1,2}, G. A. Kovaltsov³, and I. G. Usoskin^{1,2}

been brought to the Earth and measured for the nuclide content and its depth distribution. Estimates of the energetic particle intensity have been conducted earlier [e.g., 1, 2, 3, 4] via quantitative modelling of nuclide production by galactic cosmic rays (GCR) and SEP. Since most of results were obtained decades ago and the quality of modelling of the cosmic ray cascade has increased significantly, the study of cosmogenic nuclide need a revision. Moreover, earlier works considered production of nuclides only by secondary protons, neutrons and α -particles, though Li et al. [5] have shown that the contribution by secondary charged pions cannot be neglected.

minus crossing the depth layers from 0 to 950 $g/cm²$ distributed with quasilogarithmic steps from 0.01 to 50 g/cm² from top to bottom. We included production of 26 Al by pions because their contribution is not negligible in dense matter, as noted by Li et al. [5]. The cross-sections of pion reactions were obtained by direct simulations with GEANT4. The method of computation of the

Conclusions

- The solar modulation of GCR and ACR flux/spectra are studied using the near-Earth satellite or Chang'E-4 LND.
- A numerical simulation model is built based on Geant4 to simulate the production of cosmogenic nuclides. Some modifications have been made for cross sections in Geant4 using the experimental data or other proper model and the contributions of all secondary particles caused by cosmic rays are included in our simulation model.
- Our simulation results suggest a substantial contribution of the secondary charged pions to the production rates of 10 Be and 14 C, as high as 21.04% for ¹⁰Be and 21.36% for ¹⁴C, respectively.
- Within one set of self-consistent parameters, the simulation results of the production rates of the cosmogenic nuclides, 53 Mn, 36 Cl, 41 Ca, 26 Al, $10B$ e and $14C$, agree well with the measured data from Apollo 15 drill core.
- Outlook: the cosmogenic isotopes could be used for exposure age determination.

Outlook

42

Thank You!