

基于RIBLL2及HFRS的高能放射性束物理研究

核物理前沿—极限条件下的核物理

极限同位旋条件→放射性核束物理

弹核碎裂/裂变反应 + In-Flight分离技术

In-Flight型放射性束装置

In-Flight分离技术

In-Flight型放射性束装置

高能放射性束装置的优势

高能放射性束实验的优势

Experimental methods

- interaction cross section
- elastic/inelastic scattering
- knockout/quasi-free knockout
- > electromagnetic excitation
- charge-exchange reactions
- ➤ fission
- \succ spallation
- Fragmentation/cascade fragmentation

RIBLL2

(External Target Facility, ETF)

Y. Z. Sun, et al., Nucl. Inst. Meth. A 927 (2019) 390

CSR外靶实验装置类弹碎片测量系统已于2018年投入物理实验运行

CSR外靶实验装置

CSR外靶实验装置—基于PXI的电子学系统

>10套(机箱+电脑)同时工作

近物所联合中科大研制

16通道: 前沿甄别+逻辑运算+时间测量+幅度测量

128通道

CSR外靶实验装置—多丝漂移室

Y. Z. Sun, et al., NIMA 894 (2018) 72

CSR外靶实验装置—多丝漂移室

CSR外靶实验装置—粒子鉴别能力

基于中高能放射性束的敲出反应: 研究非稳定原子核结构的最常用的手段之一

MSU

ncoming partic

Phys. Rev. Lett. 120(2018)052501

Progress in Particle and Nuclear Physics 118 (2021) 103847

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics
journal homeocer wave density comflorate/page

ER journal homepage:

Quenching of single-particle strength from direct reactions with stable and rare-isotope beams

T. Aumann ^{a,b}, C. Barbieri ^{c,d,e}, D. Bazin ^{f,g}, C.A. Bertulani ^h, A. Bonaccorso ⁱ, W.H. Dickhoff ^j, A. Gade ^{f,g}, M. Gómez-Ramos ^{a,k}, B.P. Kay ¹, A.M. Moro ^{k,m}, T. Nakamura ⁿ, A. Obertelli ^{a,*}, K. Ogata ^{o,p}, S. Paschalis ^q, T. Uesaka ^r

PHYSICAL REVIEW C 103, 054610 (2021)

Updated systematics of intermediate-energy single-nucleon removal cross sections

J. A. Tostevin¹ and A. Gade^{2,3}

¹Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

CSR外靶装置上的核物理研究—敲出反应

CSR外靶装置上的敲出反应实验结果

¹⁴O (-p), *Phys. Rev. C* 90 (2014) 037601
¹⁶C (-p), *Phys. Rev. C* 100 (2019) 044609
¹⁴⁻¹⁶C (-n), *Phys. Rev. C* 104 (2021) 014310
¹²⁻¹⁵C, ¹⁴⁻¹⁷N (-p), Paper in preparation

系统的实验测量表明:敲除反应在不同能区均具有很强的适用性!

CSR外靶装置上的敲出反应实验结果

未来3-5年内,开展丰中子sd壳核的反应机制及结构演化研究

启用中子探测系统

中子探测系统的投入物理运行后,将极大地拓展外靶实验研究内容!

HIAF HFRS

高能放射性束流线(HFRS) High energy Fragment Separator

流强(pps)	能量(GeV/u)	粒子鉴别能力
1 (⁷⁸ Ni) 10 ⁶ (¹³² Sn)	2.9 (A/Z=2) 1.7 (A/Z=3)	up to Z ~ 90
粒子流强高	粒子速度快	鉴别能力 <mark>强</mark>

强流重离子加速器装置(HIAF) High Intensity heavy-ion Accelerator Facility

Ion species	Energy (GeV/u)	Intensity (ppp)
proton	9.3	2.0×10 ¹²
¹⁸ O ⁶⁺	2.6	6.0×10 ¹¹
⁷⁸ Kr ¹⁹⁺	1.7	3.0×10 ¹¹
²⁰⁹ Bi ³¹⁺	0.85	1.2×10 ¹¹
238U34+ (80+)	0.8 (2.6)	1.0 (0.3) ×10 ¹¹

HFRS上可产生的放射性核素

HFRS束线探测设备

Detector	Requirements	Option 1 (guaranteed)	Option 2 (Expected)	
Small TOF	 ~30(x)×30(y) mm² <50 ps, ~5.0e+7 pps 	Plastic Scint+PMT(SiPM)	Diamond	
Large TOF	 ~250(x)×5(y) mm² <50 ps, ~2.3e+7 pps 	Plastic Scint+PMT(SiPM)		
Tracking	 ~250(x)×5(y) mm² <0.5 mm, ~2.3e+7 pps 	PPAC or MWPC (Delay-line) KDC	GEM-TPC、MCP	Electronics
ΔΕ	 ~250(x)×5(y) mm² <0.5%, ~2.3e+7 pps 	MUSIC PreAmp+Amp+Flash ADC	Gasous Xenon	and DAQ
F2 Tracking	 ~30(x)×30(y) mm² <1 mm, ~5.0e+7 pps 	Fiber + SiPM		
F5 Tracking	 ~250(x)×5(y) mm² <5 mm, ~2.3e+7 pps 	Plastic Scint+PMT(SiPM)		

	杆冬	参与人	时间节点				
	任务		2022.06	2022. 12	2023.06	2023.12	2024. 6
1	各靶室设计	章学恒	完成设计	完成招标		完成加工	
2	初级靶系统	章学恒、马少波		完成性能测试			
3	降能器系统	章学恒、杨振		验证加工工艺	完成设计	完成招标	完成加工
4	狭缝及次级靶系统						
5	金刚石探测器	马少波、章学恒		完成大面积研制研制		完成样机性能测 试,判断是否满足 应用要求	
6	快时间塑闪探测器(小面积、大面积)	郑勇、王凯龙		完成样机研制		完成样机性能测 试,判断是否满足 应用要求	
7	KDC位置探测器	寺岛知、王惠仁					
8	GEM-TPC位置探测器	余玉洪					
9	延迟线读出多丝正比室	郑勇		完成样机研制		完成样机性能测 试,判断是否满足 应用要求	
10	MUSIC	唐述文					
11	氙闪烁光探测器	章学恒、马少波	完成样机加工	完成样机性能初步测试		完成样机性能测 试,判断是否满足 应用要求	
12	MCP位置探测器	马少波、章学恒		完成样机加工		完成样机性能测 试,判断是否满足 应用要求	
13	光纤位置探测器						
14	数据获取	余玉洪、马少波					
15	高纯锗探测器	郑勇		完成设计		完成预言测试	
16							

国际上新一代高能放射性束流装置

380 mm

装置	长度 (m)	角接收度 (mrad)	动量接收度 (%)	分辩本领	最大磁刚度 (Tm)
HFRS	191.8	\pm 30 (X); \pm 15 (Y)	±2.0	850/1100	25
SuperFRS	182.2	\pm 40 (X); \pm 20 (Y)	±2.5	750/1500	20
BigRIPS	78.2	\pm 40 (X); \pm 50 (Y)	±3	1260/3420	9.5
ARIS	86.8	\pm 40 (X); \pm 40 (Y)	±5	1720/3000	8

具有最高的磁刚度,可传输分离最高能量放射性束流

$B\rho_{max} = 25 \text{ Tm} \quad \Delta P/P = \pm 2\%$ 30 $\pi \cdot \text{mm} \cdot \text{mrad}$

- > Synthesis of neutron rich hypernuclei
- > Nucleon excitations in nuclei

▶ ...

- Giant resonance of neutron rich nuclei
- Spectroscopy of meson-nucleus bound system

Βρ**=25Tm**

Unique Experiments at HIAF!

具有双运行模式,主分离器后半段可用作次级反应谱仪

Achromatic mode

HFRS上的放射性束物理实验分类

F4靶区探测系统研制及可开展的物理研究规划

New magic numbers
 Shell evolution

Shape coexistence

① F4-F6谱仪:类弹产物测量

- Interaction/Fragmentation cross section
 Knockout (inclusive cross section + momentum distr.)
- > Charge exchange

② **CsI阵列:在束γ谱测量**

> Spectroscopy of nuclei at limits → E(2+), E(4+), ...
 > Knockout (exclusive cross section + momentum distr.)
 > Inelastic/Coulomb excitation → B(E2)

• •••••

- ③ CsI阵列+DSSD阵列:轻带电粒子∆E,E,径迹
 - >Quasi-free scattering
 - ≻Missing mass → unbound states
 - Reaction mechanism of knockout/quasi-free/...

CsI阵列的研制

物理需求

测量高能放射性束打靶后产生的

≻在束伽马射线

>质子等轻粒子

指标要求 (E_{beam} ~ 500MeV/u) ≻γ能量分辨:~10% FWHM @1 MeV

≻γ探测效率: >50% @1 MeV

≻轻粒子能量测量范围:Up to 300 MeV

CsI阵列构型设计及模拟结果

设计参数

≻CsI(Tl)晶体数量: 640(桶部)+1024(端部1)+512(端部2) = 2176

- ▶ 覆盖极角范围: 6 %-135 °
- ▶晶体长度:110~180mm

模拟结果 (E_{beam} ~ 500MeV/u)

> γ能量分辨: ~9% FWHM @1 MeV
> γ全能峰探测效率: ~70% @1 MeV

CsI晶体包装测试进行中

CsI阵列读出电子学研制

技术路线:波形数字化技术

设计指标:

- ✓ 信号采集动态范围:
 - 100keV ~ 10MeV / 1MeV ~ 500MeV
- ✓ ADC精度:每通道14位
- ✓ 采样率:~50 MSPS
- ✓ 其他:FPGA内在线数字滑动平均、基线恢复、数字成形、 在线粒子鉴别等算法集成

已完成电子学原理样机设计、上位机控制程序编写以及关键功能测试。 正在进行电子学系统的复制与FPGA算法的优化。

IMP

≻强流和高能是国际上新一代In-flight型放射性束装置的共同特点。

- > 位于兰州的高能放射性束流线RIBLL2可以提供数 百MeV/u的放射性束流,RIBLL2外靶实验装置也 已经投入物理运行,基于外靶装置首先开展了系列 不稳定核的反应研究。
- ≻位于惠州的新一代放射性束流装置HIAF-HFRS正 在兴建当中,HFRS可产生极远离稳定线的放射性 束流,将为探索不稳定核中的新现象新规律提供新 机遇。

新纳大家!

同科

訂 院

Π

物

H

E