Event-by-event jet anisotropy and hard-soft tomography of the quark-gluon plasma

产南行港大学 H CHINA NORMAL UNIVERSITY

贺亚运 (华南师范大学)

Collaborators: 曹杉杉, 陈蔚, 罗覃, 庞龙刚, 王新年 arxiv: 2201, 08408

第一届"粤港澳"核物理论坛, 珠海 July 2-6, 2022

Motivation

Fig: A schematic diagram of relativistic heavy-ion collisions. *Made by Chun Shen, https://u.osu.edu/vishnu/category/visualization/*

Nucleus collision Pre-equilibrium Initial state QGP evolution Hadron rescattering **Detection**

QGP: a hot and dense quark-gluon "soup", created by "the little bang", like an early universe

D. d'Enterria & B. Betz, (2009). 10.1007/978-3-642-02286-9_9.

Motivation

Jet quenching: jet energy loss and transverse momentum broadening due to jet-medium interaction

How to probe the QGP? ✦ Hard probes: large transverse momentum, ✦ Soft probes: hydrodynamics, ... such as jets, hadrons and heavy flavors

Jet : a collimated spray of high p_T particles

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d\sigma_{AA}^{jet}}{d\sigma_{pp}^{jet}}$
 $R_{AA} = 1$ Suppression? No ➡ The inclusive jet nuclear modification factor $R_{\textrm{\tiny AA}}$ anti- k , $R = 0.4$ jets $|y| < 2.1$ **ATLAS 0** - 10%, $\sqrt{s_{NN}}$ = 2.76 TeV [PRL 114 (2015) 072302] \bullet 0 - 10%, $\sqrt{s_{\sf NN}}$ = 5.02 TeV • 0 - 10%, $\sqrt{s_{NN}}$ = 5.02 TeV
= 30 - 40%, $\sqrt{s_{NN}}$ = 2.76 TeV [PRL 114 (2015) 072302] Suppression? *Yes* 30 - 40%, $\sqrt{s_{NN}}$ = 5.02 TeV $\left|\mathbf{r}\right|$ $\left|\left\langle \mathbf{T}_{\mathbf{A}\mathbf{A}}\right\rangle\right|$ and luminosity uncer. **y** 0-10% central collision $\overline{}$ **x b b c c c c c** semi-central 0.5 30-40% collision 40 100 200 300 500 900 60 p_{t} [GeV] A smaller R_{AA} implies a stronger suppression. Fig: Inclusive jet nuclear modification factor *ATLAS, PRL 114 (2015),072302 Jet quenching effect ! ATLAS, PLB 790 (2019) 108*

Motivation

Jet quenching observables:

Motivation

- Jet quenching observables:
- ➡ The inclusive jet nuclear modification factor
-

$$
\frac{dN}{d\phi} = C(1 + 2\Sigma_n v_n \cos[n(\phi - \Psi_n)]
$$

$$
\epsilon_2 = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad \qquad v_2 = \frac{\langle p_y^2}{\langle p_y^2
$$

\triangleright n=1, direct flow \blacktriangleright The inclusive jet anisotropy flow $v^\mathrm{jet,\,EP}_n=\langle\langle\cos[n(\phi^\mathrm{jet}-\Psi_n)]\rangle\rangle$ \triangleright n=2, elliptic flow \triangleright n=3, triangle flow *path-length dependence* 5 - 10 % anti- k_t , $R = 0.2$ $10 - 20%$ **ATLAS** 0.06 $\frac{10}{3}$ (0.04 0.02 20 - 30 % $\int L dt = 0.14 \text{ nb}^{-1}$ $30 - 40%$ 0.06 Pb+Pb $\sqrt{s_{NN}}$ = 2.76 TeV $\frac{10}{5}$ \cdot 0.04 0.02 $40 - 50\%$ $150 - 60\%$ 0.06 $\frac{10}{5}$ 0.04 0.02 $-\,p_x^2\rangle$ 150 200 50 100 150 200 100 50 $\overline{p_{x}^{2}+p_{x}^{2}\rangle}$ p_{\rm_T} [GeV] p_{\rm_T} [GeV] ATLAS, PRL 111 152301 (2013)

✓ Jet quenching leads to jet suppression

-
-

\star Can we describe both jet R_{AA} and v_2^{jet} in a unified framework? ✓ Path-length dependence of jet quenching leads to jet anisotropy

The linear Boltzmann transform **transform (LBT)** model
\n
$$
p_a \cdot \partial f_a = \int \sum_{\text{bed}} \prod_{i=b,c,d} \frac{d^3 p_i}{2E_i(2\pi)^3} (f_c f_a - f_a f_b) |M_{ab\rightarrow cd}|^2 \times \frac{\gamma_b}{2} S_2(\hat{s}, \hat{t}, \hat{u})(2\pi)^4 \delta^4(p_a + p_b - p_c - p_d) + \text{inelastic}
$$

\n $S_2(\hat{s}, \hat{t}, \hat{u}) = \theta(\hat{s} \ge 2\mu_D^2) \theta(-\hat{s} + \mu_D^2 \le \hat{t} \le -\mu_D^2), \quad \mu_D^2 = \frac{3}{2} g^2 T^2$
\nElastic: $\Gamma_a^{\text{el}} = \frac{p \cdot u}{p_0} \sum_{\text{bcd}} \rho_b(x) \sigma_{ab \rightarrow cd}$
\nInelastic: $\frac{d\Gamma_a^{\text{inel}}}{dzdk_{\perp}^2} = \frac{6\alpha_s P_a(z) k_{\perp}^4}{\pi (k_{\perp}^2 + z^2 m^2)^4} \frac{p \cdot u}{p_0} \hat{q}_a(x) \sin^2 \frac{\tau - \tau_i}{2\tau_f}$ high twist approach
\nshower parton radiation \rightarrow QCD
\nInelastic: $\frac{d\Gamma_a^{\text{inel}}}{d z dk_{\perp}^2} = \frac{6\alpha_s P_a(z) k_{\perp}^4}{\pi (k_{\perp}^2 + z^2 m^2)^4} \frac{p \cdot u}{p_0} \hat{q}_a(x) \sin^2 \frac{\tau - \tau_i}{2\tau_f}$ high twist approach
\n σ_{ab} and γ_{eng} , PRL as (2000) as a
\nZhang, PRL as (2000) as a
\nZhang, PRL as (2004) or 2301
\nModel features:
\n \rightarrow the-scattering
\n(thermal parton)
\nback reaction
\nback reaction
\n \rightarrow Black reaction
\n \rightarrow Coulued parton

and valid for $\delta f \ll f$

 $\rm astic$

The inclusive jet shower partons from PYTHIA 8

Final inclusive jet

Initial condition from AMPT *T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05 (2006) 026.*

e-by-e 3+1D CLVisc: evolution with a hydro background: out-of-cone jet energy loss EVUIULIUIT WILLE A LIVULU DACK SUBBIULE OUT-Of-cone jet energy loss collisional + radiation in QGP phase, free streaming in hadron phase *064901 (2005).*

Pang, Wang & Wang, PRC 86 (2012) 024911

Pang, Hatta, Wang & Xiao, PRD 91 (2015) 074027

 Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, PRC 72,

freeze-out temperature: $T_f = 137$ MeV

The LBT model with a QGP-like medium: framework

The inclusive jet in pp collisions

p_T distribution of pp collision within PYTHIA 8

PYTHIA 8 can well describe the experimental data at LHC energies for different rapidity ranges.

Energy loss in the LBT model

medium recoil effect up to 15%

back reaction not negligible

larger cone size and radial expansion enlarges the effects above.

$$
\begin{array}{cc}\n\text{det energy loss: LBT & Bayesian} \\
\frac{d\sigma_{AA}^{\text{jet}}}{dp_T dy}(p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \times N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \times N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy} (p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp
$$

Jet energy loss: LBT & Bayesian extraction

$\left(p_{T}+\Delta p_{T},R\right) W_{AA}(\Delta p_{T},p_{T}+\Delta p_{T},R)$

贺亚运*, Long-Gang Pang, Xin-Nian Wang. PRL 122 (2019) 252302*

贺亚运*, Shanshan Cao, Wei Chen, Tan Luo, Long-Gang Pang and Xin-Nian Wang. PRC 99 (2019) 054911*

Jet R_{AA} has a weak p_{τ} dependence in the high p_{τ} range

The inclusive jet anisotropy vⁿ

single hydro event: fluctuating averaged over 200 hydro events: smooth

Initial jet producation at 2.76 TeV

$$
\frac{\partial f}{\partial t} + \frac{\vec{k}_{\perp}}{\omega} \cdot \frac{\partial f}{\partial \vec{r}_{\perp}} = \frac{\hat{q}}{4} \vec{\nabla}_{k_{\perp}}^2 f_a(\vec{k}, \vec{r}) \quad A_{E_{\perp}}^{\vec{n}}
$$

贺亚运*, Long-Gang Pang, Xin-Nian Wang. PRL 125 (2020) 122301 Wei Chen, Zhong Yang,* 贺亚运*, Weiyao Ke, Long-Gang Pang and Xin-Nian Wang, RRL 127, (2021) 082301*

- transverse jet asymmetry correlates with initial jet production position quantitatively
- Jet localization can be used to study jetmedium interaction in detail, such as diffusion wake

jet v₂ at 5.02 TeV

Azimuthal angle distributions clearly show the existence of jet v_2 and v_3 .

p^T dependence of inclusive jet v2 and v³

 $v_n^{\text{jet,EP}} = \langle \langle \cos(n[\phi^{\text{jet}} - \Psi_n]) \rangle \rangle$

Weighted with bulk v_2 from e-by-e hydro profiles, slightly larger than event plane method

Event plane method: Scalar product method:

Jet *v*² at both colliding energy are almost the same and have a weak *p^T* dependence

pT dependence of inclusive jet v2 and v³

Almost linear dependence!

✓The LBT model can describe both jet suppression and jet anisotropy flow ✓Jet energy loss distribution can be extracted from experimental data ✓Jet anisotropy correlates with medium anisotropy ✓Initial jet production localization can be used to study jet-medium inteaction in detail

 \triangleright Extract path length dependence of jet quenching from experimental data on jet *RAA* & *v2*

Thanks for your attention!

Outlook

Motivation

RHIC at BNL, operation in 2000 Au+Au at 200 GeV

Fig: RHIC and LHC, from https://www.innovationnewsnetwork.com/ technology-in-relativistic-heavy-ion-collider-physics-research/6466/

LHC at CERN, operation in 2010 Pb+Pb at 2.76 TeV, 5.02 TeV

Fig: Two gold ions collide head-on in the STAR detector, from http://www.rhic.bnl.gov/STAR/)

Fig: Proton-lead ion run for which no fewer than 449 particles tracks were reconstructed.(Image from CMS/CERN)

The linear Boltzmann transform to the *the*
$$
e^{i\theta}
$$
 and the *the* $e^{i\theta}$ and the *the* $e^{i\theta}$

$\rm{a}\rm{st}$ ic

Soft hadron anisotropy: v2 and v³

soft hadron v₂ soft hadron v₃

Effects of viscosity on jet v2

Effects of viscosity: v2 distributions

No significant difference between ideal and viscous hydro

Effects of viscosity: initial geometry

ideal hydro $^{0.12}_{0.08}$

viscous hydro $^{0.12}_{0.08}$

No significant difference between ideal and viscous hydro

The LBT model can well describe the experimental data of jet anisotropy v2 in the most and middle central collisions.

Effects of viscosity: jet RAA and jet v²

Effects of viscosity: hard-soft correlations

No significant difference between ideal and viscous hydro

Effects of medium response on jet v2

Effects of medium response: medium response (me. re.) : medium recoil + back reaction.

Effects of medium response:

-
-
-

The LBT model with a uniform and static medium

parton energy loss

Yayun He, Tan Luo, Xin-Nian Wang, Yan Zhu. Phys. Rev. C 91 (2015) 054908. arXiv:1503.03313.

$\langle v_2^{\rm soft}\rangle \pm \delta v_2^{\rm soft}$		
	$2.76\,\, \mathrm{TeV}$	$5.02~\mathrm{TeV}$
		$5-10\%$ $\vert 0.047 \pm 0.007 \vert 0.054 \pm 0.008 \vert \vert$
		$10-20\%$ 0.060 ± 0.008 0.076 ± 0.007
		$20 - 30\% \, 0.076 \pm 0.008 \, 0.086 \pm 0.008$
		$30 - 40\% \, 0.089 \pm 0.008 \, 0.095 \pm 0.009$
		$40 - 50\% \, 0.079 \pm 0.008 \, 0.086 \pm 0.009 \, $
		$50 - 60\% \, 0.078 \pm 0.009 \, 0.078 \pm 0.009$

TABLE I. The mean values and standard deviations of soft hadron v_2^{soft} in Pb+Pb collisions at \sqrt{s} = 2.76 TeV and 5.02 TeV in centrality bins $5-10\%, 10-20\%, 20-30\%, 30 40\%, 40 - 50\%$ and $50 - 60\%$ from the CLVisc model.

TABLE II. The mean value and standard deviation of soft hadron v_3^{soft} in Pb+Pb collisions at \sqrt{s} = 2.76 TeV and 5.02 TeV in centrality bins $5-10\%, 10-20\%, 20-30\%, 30 40\%, 40 - 50\%$ and $50 - 60\%$ from the CLV is cmodel.

Underlying Event Subtraction (UES)

Seed jet: $E_T > 3$ GeV for at least one parton,and

 $E_T^{max}/E_T^{ave} > 4$
ATLAS Collaboration, Phys. Lett. B 719, 220 (2013).

 $E_T^{UES} = E_T^{seedjet} - A^{seedjet} \rho (1 + 2v_2 \cos[2(\phi_{jet} - \Psi_2)])$ We only subtract the energy of seed jets, and count all the final jets!

UE: collisions of beam remnant, fluctuation of the background, non-perturbative effects. Subtraction is needed to exclude the soft particles.

Effects of medium response and radial expansion

medium recoil effect up to 15%

back reaction not negligible

larger cone size and radial expansion enlarges the effects above.

Cone size dependence of *RAA*

- -

->less suppression

quantitatively relates to medium response

jet-medium transport coefficient

 $\overline{7}$ **H-H-#** MARTINI HT-BW 6 HT-M 5 \hat{q}/T^3 $\overline{3}$ $\overline{2}$ $\frac{1}{2} \hat{q}_N / T_{eff}^3(DIS)$ $\mathbf{0}$ 0.1

 $\hat{q} = \frac{<\Delta p_T^2>}{\sqrt{ }}$

43

consider all the jets

 $\sqrt{(\eta - \eta_J)^2 + (\phi - \phi_J)^2} < R$

M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012).

anti-kt algorithm used to reconstruct in FAST JET algorithm used to reconstruct in FAST JET algorithm used in FAST **Jet reconstruction including medium recoils and back reaction**

medium recoil re-scattering, back reaction ("negative particles")

modified FASTJET, subtract the "negative" particles

Multistage evolution, see: ChanwookPark, HP 2018

Inclusive jet anisotropy

46

$$
x=\frac{\Delta p_T}{\langle \Delta p_T \rangle}
$$

Main Course: jet energy loss distributions
\n
$$
\frac{d\sigma_{AA}^{jet}}{dp_T dy}(p_T, R) \approx N_{bin}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{jet}}{dp_T dy}(p_T + \Delta p_T, R) W_{AA}(\Delta p_T, p_T + \Delta p_T, R)
$$
\nMC transport models:
\n
$$
\sigma_{pp}^{jet}(p_T)
$$
\n
$$
\frac{d\sigma_{pp}^{jet}}{d\Delta p_T dy}(p_T, \Delta p_T) = \sigma_{AA}^{jet}(p_T)
$$
\n
$$
\sigma_{AA}^{jet}(p_T) = \sigma_{AA}^{jet}(p_T) \frac{d\sigma_{pp}^{jet}}{d\Delta p_T dy}(p_T, \Delta p_T) = \sigma_{AA}^{jet}(p_T) \frac{d\sigma_{pp}^{jet}}{d\Delta p_T dy}
$$
\n
$$
\frac{d\sigma_{pp}^{jet}(p_T)}{d\Delta p_T y} = \sigma_{AA}^{jet}(p_T) \frac{d\sigma_{pp}^{jet}}{d\Delta p_T y} = \sigma_{AA}^{jet}(p_T) \frac{d\sigma
$$

Main Course: jet energy loss distributions

Main Course: jet-induced diffusion wake

