14 MeV下⁹³Nb(n,2n)^{92g+m}Nb反应截面 的高精度测量

TREETENSIE

第一届"粤港澳"核物理论坛

陈 建 琪 大湾区大学(筹)

chenjianqi@gbu.edu.cn 2022/7/5

学校简介

2018年谋划筹建, 2019年明确在东莞设立, 2021年大湾区大学(筹)成立 2022年列入广东省政府报告 力争2023年正式开办

▶ 2018年, 广东省谋划在大湾区布局 设立一所世界一流的高水平大学。 > 2019年, 省教育厅和东莞市联合成 立大湾区大学筹建工作领导小组。 ▶ 2020年,时任省长马兴瑞提出支持 东莞市加快推进大湾区大学"高起点 谋划、高格局定位、高水平建设"的 筹建工作; 省政府常务会议审议通过 《大湾区大学初步办学方案》。 ▶ 2021年,正式成立独立事业单位 "大湾区大学(筹)"作为筹建实体。 ▶ 2022年, 广东省政府工作报告明确 提出推进"大湾区大学"建设。

大湾区大学筹建负责人

美国哈佛大学博士,数学家,

中国科学院院士、美国艺术与科学院院士, 北京大学数学科学学院学术委员会主任、教授、博士生导师, 北京大学原副校长,中国民主同盟中央委员会副主席。

——办学定位——

大湾区大学定位为<mark>新型研究型大学</mark>,以理工科为主,兼有管理学科;在本科、硕 士、博士多层次上办学,立足东莞、服务广东、面向全国、放眼世界。旨在办成 一所独具特色的、引领未来科技发展、产业升级和社会进步的世界一流大学。

重点聚焦物质科学、先进工程、生命科学、新一代信息技术、理学、金融等 六个领域,覆盖工学、理学、管理学等三个学科门类 前期拟依托相关单位建立三大学院:物质科学学院、先进工程学院、理学院

■按"一校两区"进行总体建设

□ 总投资:100亿元
□ 设立松山湖校区和滨海
湾校区,占地2356亩,
总建筑面积100万平方
米。

松山湖校区

- 选址于东莞松山湖高新区,毗邻松山湖材料实验
 室、中国散裂中子源、华为总部等。
- 占地约256亩,建筑面积约25万平方米。
- · 预计2023年9月前教学区完成建设并投入使用。

主要建设与综合性国家科学
 中心有关大科学装置、新型
 研发机构融合办学的学科领
 域,设立相关领域研究院,
 开展部分领域高年级本科生
 培养

优先考虑不限于

- ◆ 新能源材料
- ◆ 功能信息材料
- ◆ 先进材料结构

重点鼓励不限于

- ◆ 中子及同步辐射
- ◆ 超快及阿秒激光技术
- ◆ 电子显微镜技术
- ◆ 物质科学计算技术

https://www.gbu.edu.cn/detail/article/118

<u>Outline</u>

Background

- The status of ⁹³Nb(n,2n)^{92g+m}Nb cross section
- Challenge and method
- The whole experiment layout
- Background and Corrections
- Results and Uncertainty
- Summary

Background

• ⁹³Nb 100% isotopic abundance, an important alloy in fusion reactor.

E(n,2n)_{th}= 9 MeV

Owe to its high threshold of (n,2n) reaction, so it can be used as indicator for T-D reaction.

• ⁹³Nb also an important alloy in the Experimental advanced superconducting tokamak (EAST) reactor.

A significant portion of the fission neutron spectrum which lies above the threshold of (n,2n) reaction for most of the reactor materials.

The China Advanced Research Reactor (CARR) [Hassan Physica Scripta, 2009, 78(4):2517-2530.]

[Ichihara A . Journal of Nuclear Science and Technology, 2016, 53(12):7.]

The status of ⁹³Nb(n,2n)^{92g+m}Nb cross section

What are the difficulties?

activation method

Reaction	half-life	E_{γ}/KeV
⁹³ Nb(n,2n) ^{92m} Nb	10.15 d	934.53
93 Nb(n,2n) ^{92g} Nb	$3.2 \times 10^7 \text{ y}$	934.53

$$\boldsymbol{N} = \boldsymbol{N}_0 \cdot \mathrm{e}^{-6.7 \times 10^{-9} \cdot \mathrm{t}}$$

The half-life of ^{92g}Nb is so long, which need long time to match statistical require.

This method is impractical for (n,2n) cross section measurement of ⁹³Nb.

direct counting method

The High γ background.

The delayed γ -rays in the sample will enhance the background and are difficult to distinguish.

【Veeser, Physical Review C,1977,16(5):1792.】

Challenge and method

- bad n/gamma discrimination
 - New detector better n/γ discrimination

high detection efficiency for neutron emitted from (n,2n) channel

The geometry of the detector

• Front view panel

• Side view panel

• Basic properties

110 ³He tubes, polyethylene moderator ($\phi_{out} = 80$ cm, $\phi_{out} = 20$ cm), center channel ($\phi = 8$ cm),

The detection principle

n+³He→p+³H

+765 KeV

Application

- (a,n) reaction cross section measurement
- fission research
- beta-decay studies
- inelastic neutron acceleration cross section measurement

This type of detector can clearly distinguish neutron signals from γ ray signals and electric noises.

The detector performance — efficiency

• Energy spectrum for secondary neutron from (n,2n) reaction

For Nb, Tm and Co, the average neutron energies emitted through (n,2n) reaction are 1.81 MeV, 1.41 MeV and 1.22 MeV respectively. • Detector shaped in cylindrical

The detector performance — efficiency

Sample	MC codes	٤،(%)	$f_{a}(\%)$	ε(%)
Nb	MCNPX	31.76	<u> </u>	30.95
Tm	MCNPX	31.26	97.45	30.46
Co	MCNPX	31.62	97.45	30.81
Co-cendl	MCNPX	31.30	97.45	30.50
Nb	FLUKA	32.10	93.86	30.13
Tm	FLUKA	31.80	93.86	29.85
Co	FLUKA	32.30	93.86	30.32
Co-cendl	FLUKA	31.90	93.86	29.94

• Detection efficiency of secondary neutron from (n,2n) reaction

• ²⁵²Cf fission neutron calibration

	experiment	FLUKA(fe)	MCNPX(fe)
Efficiency	29.03±0.5%	30.93±2%	29.79±1.7%

 $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{f}_e$

ϵ_0 Detection efficiency obtained through MC simulation

 f_e^{252} Cf effiency calibration factor

The detector performance — moderation time

• Moderation time distribution for different neutron energy

• Cumulative efficiency relative to the maximum as a function of time

Remark

- First, about 90% of neutrons are detected within 200 μs after neutron emission.

• Second, the fraction of the neutrons detected during a given time is nearly independent of neutron energy.

The detector performance — moderation time

- Experiment for moderation time
 Experiment result

• The time needed to count 90% neutrons

	MCNPX	exp-c
Moderation time	198 μs	194 μ s

• Gate time 200 μs

Challenge and method

bad n/gamma discrimination

A new neutron detector better n/γ discrimination \checkmark high detection efficiency for

high detection efficiency for neutron from (n,2n) channel \sim 30% \checkmark

high neutron induced background
 A great neutron collimator and dump.

Collimator effectiveness

• The design and actual photo of collimator

• Checked through the neutron radiography

From x axial umbra diameter 3.47 cm, penumbra diameter 0.93 cm

From y axial umbra diameter 3.35 cm penumbra diameter 1.02 cm

Can well cover the sample size

Influence of scattered neutrons from wall

• relative flux without capture

• relative flux with capture

• The total neutrons captured by the detection system when 1000000 neutrons irradiated along the collimator inlet

Condition	Without capture	With capture
FLUKA	178	177
MCNPX	176.5	176.3

The function of capture is invalid.

Challenge and method

bad n/gamma discrimination

A new neutron detector better n/γ discrimination \checkmark high detection efficiency for

high detection efficiency for neutron from (n,2n) channel \sim 30% \checkmark

- high neutron induced background
 A great neutron collimator and dump. 1/5000
- systematic uncertainty evaluation

Two independent relative measurements

Samples

- Nb sample Sample needed to be measured.
- Tm sample Standard sample 1. $\sigma_{Tm}(n, 2n) = 1988 \pm 99 \text{ mb}$ [ENDF Data.]
- Co sample Standard sample 2. $\sigma_{Co}(n, 2n) = 775 \pm 7.69 \text{ mb}$

[Hasan, S. J. Journal of Physics G: Nuclear Physics, 12(5), 397.]

- C sample Sample used to evaluated the accidental 2n events. For C sample $U_{(n,2n)th} > 20 MeV$
- Sample holder

• Basic parameters

Same dimension: 3 cm in diameter, 2 cm in height.

A successive run was taken for every sample and can for a live time of 4 h each.

Challenge and method

bad n/gamma discrimination

A new neutron detector better n/γ discrimination \checkmark high detection efficiency for

high detection efficiency for neutron from (n,2n) channel \sim 30% \checkmark

- high neutron induced background
 A great neutron collimator and dump. √
- systematic uncertainty evaluation

Two independent relative measurements for cross-check 1/5000 \checkmark

• spurious 2n event

pulse beam C sample used to evacuate the contribution of (n,n) and (n,n') for another samples. ($U_{(n,2n)th} > 20 MeV$)

The experiment layout

The experiment arrangement

• Experiment in CIAE on January 15th, 2018.

• Neutron source Cockroft-Walton type neutron generator

Neutron source

• Accelerator

Cockroft-Walton type neutron generator

 $d+T \rightarrow n+^4He$ +17.59 MeV

- Neutron energy $E_n = 14.72 \pm 0.5$ MeV Calculated through TARGET code
- Neutron flux $I_n = 1 \times 10^7 n/s$ in 4π solid angle at target position. Monitored by counting associated alpha particles.
- Pulsed neutron beam

According to inverse square law, 0.12 n/pulse at sample position.

Electric and DAQ system

Corrections

- A series of corrections (considered)
 - a). A background correction
 - b). A correction for dead time losses
 - c). An efficient correction
 - d). A multiple event correction
 - e). A correction for events not included in the samples
- A series of corrections (unconsidered)
 - a). Not considering the flux attenuation in the sample
 - b). Not considering the $N_{(n,2n)}$ events in 3n and 4n events
 - c). Not considering the loss of secondary neutron in the sample

Sample	Total 2n	N_{b-b}	N_{b-s}	N'_{s-s}	N _b	N _(n,2n)	η
Nb	37638	2016	3015	3633	8664	28974	3.344
Tm	31705	1963	2592	2826	7381	24324	3.295
Со	340101	1882	3068	4377	9328	24773	2.656
С	5070	2532	1762	776	5070		

• Results based on different samples and MC codes

• Calculated based on $\sigma_{Tm}(n, 2n)$ and $\sigma_{Co}(n, 2n)$

$$\sigma_{Nb}(n,2n) = \frac{N_{Nb(n,2n)}}{N_{Tm}(n,2n)} \cdot \frac{S_{Tm}}{S_{Nb}} \cdot \frac{\epsilon_{Tm}}{\epsilon_{Nb}} \cdot \frac{\epsilon_{Tm}}{\epsilon_{Nb}} \cdot \sigma_{Tm}(n,2n)$$

 $\sigma_{Tm}(n,2n) = 1988 \pm 99 \text{ mb} \quad S_{Tm} = 1.09E + 23 / \text{cm}^2 \quad S_{Nb} = 6.72E + 22 / \text{cm}^2$ $\sigma_{Nb}(n,2n) = \frac{N_{Nb(n,2n)}}{N_{Co}(n,2n)} \cdot \frac{S_{Co}}{S_{Nb}} \cdot \frac{\epsilon_{Co}}{\epsilon_{Nb}} \cdot \frac{\epsilon_{Co}}{\epsilon_{Nb}} \cdot \sigma_{Co}(n,2n)$

 $\sigma_{Co}(n, 2n) = 775 \pm 7.69 \text{ mb} \ S_{Co} = 1.87\text{E} + 23 \text{ /cm}^2$

• Results based on different samples and MC codes

Based	MCNPX-	MCNPX-	FLUKA-	FLUKA-
sample	ENDF	CENDL	ENDF	CENDL
Со	1513±40 mb	1490±39 mb	1502±40 mb	1471±39 mb
Tm	1418±76 mb	1418±76 mb	1426±76 mb	1426±76 mb

• Based on Tm

Uncertainty source	Uncertainty %
Efficiency calculation	0.11
The ¹⁶⁹ Tm(n,2n) ¹⁶⁸ Tm cross section	5
The total 2n events for Nb	0.56
The total 2n events for Tm	0.61
The total 2n events for C	1.56
Total	5.38

• Based on Co

Uncertainty source	Uncertainty %
Efficiency calculation	0.11
The ⁵⁹ Co(n,2n) ⁵⁸ Co cross section	0.95
The total 2n events for Nb	0.56
The total 2n events for Co	0.59
The total 2n events for C	1.56
Total	2.56

- Develop a spherical ³He tubes array detector, which has an flat efficiency in interesting energy range and find that this type of detector is suitable to use at (n,2n) reaction cross-section measurement.
- Provide the new experiment data for ⁹³Nb(n,2n)^{92g+m}Nb cross section with the least uncertainty.

Our research team

Colleagues taken part in this experiment

欢迎各位老师批评指正! 也欢迎大家来大湾区大学访问文流!

Backup spare

粤港澳大湾区总面积5.6万平方公里;

目前,粤港澳三地现有高校 192所,每百万人口拥有的高校约2.64 所, 低于纽约湾区 11.24 所、旧金山湾区 10.71 所、东京湾区 5.95 所,显示粤 港澳大湾区高等教育资源总量不足。

东莞作为粤港澳大湾区建设的节点城市,办学层次和结构体系有待完善, 高等教育综合实力有待提高——大湾区大学应运而生。