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Converting light into matter: using the
Breit-Wheeler process to probe QGP
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Relativistic heavy-ion collisions
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Not just a hadron collider

® Equivalent Photon Approximation

—>ttt1t * Proposed in 1924 by Fermi
E - Photon Flux o 72
A
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Not just a hadron collider

® Equivalent Photon Approximation

Proposed in 1924 by Fermi
« Photon Flux o Z2

\

E
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maximum energy
E v max""V(hC/ R)

typical pr (& virtuality)
PTtmax ~ hc/R

Coherent strengths (rates)
scale as Z2: nuclei >> protons
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Not just a hadron collider

Photon-nuclear
interactions

Photon-photon
interactions
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Not Just a hadron colllder

Photon-photon
interactions

(a) Pb Pb  (b) Pb Pb
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® QED STAR, PRC 70 (2004) 031902; PRL 121 (2018) 132301;
PRL 127 (2021) 052302

® AXIon search | ATLAS, Nat. Phys. 13 (2017) 852; PRL 121 (2018) 212301;

| PRL 123 (2019) 052001; PRC 104 (2021) 024906
Shuai Yang CMS, PRL 127 (2021) 122001 I



Breit-Wheeler process
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® Breit-Wheeler process: converting real photon into ete™

* Proposed in 1934
Breit & Wheeler, Phys. Rev. 46 (1934) 1087
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Breit-Wheeler process

> > 1934, Breit and Wheeler, Collision of two light
Quanta to create matter and antimatter (e*e’)

14 rather than exact relations. It is also hopeless to

e try to observe the pair formation in Taboratory
experiments with two beams o X-rays Or_y-rays
A meeting each other on account of the smallness
« et of ¢ and the insufﬁcientlz large available densities

% of quanta. In the considerations of Williams,

however, the large nuclear electric fields lead to

large densities of quanta in moving frames of
A > > A reference. Lhis, together with the large number

® Breit-Wheeler process: converting real photon into et e~

* Proposed in 1934
Breit & Wheeler, Phys. Rev. 46 (1934) 1087
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Breit-Wheeler process

® Breit
* Pror
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Light into

matter

Nature Photon 8 (2014) 496

Oliver Pike explains to Nature Photonics that the so far elusive electron-positron pair production from
light may now be possible using existing technology.

B Why work on Breit-Wheeler pair
production?

The Breit-Wheeler process is the
production of an electron—positron pair
from the collision of two photons. Being
the inverse of Dirac annihilation, it is the
simplest mechanism by which light can

be converted into matter. The process also
has wide significance for areas of high-
energy astrophysics, including the radiation
fields of compact objects, the cut-off of
cosmic rays propagating over intergalactic
distances and the various mechanisms of
gamma-ray burst emission. We have long
been interested in the physics of such
systems and approaches for replicating
their behaviour in the laboratory. When we
performed order-of-magnitude estimates
to assess how existing laser facilities could
be used to study the fundamental processes
relevant to these systems, we were
surprised to discover that Breit-Wheeler
pair production may finally be observable
80 years after it was theoretically predicted.

B How can pair production be done in

the laboratory?

Detecting the Breit-Wheeler process has
proved extremely difficult, because of the
high energy threshold for the reaction: the
product of the two photon energies must
be at least (511 keV)? In the past, this
requirement has been too demanding, and
consequently the process has completely
eluded observation. By using a unique
combination of gamma- and X-ray sources,
our scheme is the first capable of promoting

a sufficient number of photons above
the threshold.

hohlraum; the photon—photon collisions
occur in vacuum. In other words, this
experiment would be the first in which
light interacts with itself with no massive
particles present.

B Where should the experiment be
conducted?

We have tailored the scheme for specific
laser facilities. The experiment is

well suited to those where hohlraum
experiments are performed, such as the
National Ignition Facility (NIF), Omega
EP and the Orion laser; these facilities
have highly energetic long-pulse systems
and will soon (after the imminent
commissioning of the ARC system at NIF)
all have powerful short-pulse capabilities.
However, the experiment could also be
performed at much smaller optical laser
facilities, such as Astra Gemini and the
Berkeley Lab Laser Accelerator, which are
routinely used to produce high-quality
wakefields. In this case, the hohlraum
radiation could be replaced by X-ray fields
created by laser irradiation of solid targets;
these fields can be both energetic and
intense even for relatively low laser energies
when short pulse lengths are used. Finally,
free-electron laser facilities, such as the
Linac Coherent Light Source, could also
host a variant of this experiment in which
the X-ray beam acts as the second source
of photons.

B What is the expected performance of
pair production?

The number of Breit-Wheeler pairs
produced depends on the system used. The

Ed Hill, Steve Rose and Oliver Pike (left to right)
with Felix Mackenroth (not pictured) have
proposed a way to use existing facilities to produce
electron-positron pairs by colliding photons.

detection method would be to use a
magnetic field to isolate the positrons, and
then use Cerenkov glass in combination
with an intensified CCD (charge-coupled
device) to collect their signature radiation.

M Are the implications only
fundamental, or are they also applied?
The primary motivation behind this work
is the first-time detection of a fundamental
physical process. In addition, successfully
implementing the experiment would
represent the first two-photon collider,
which may ignite interest in the concept

in the high-energy-physics community. As
with any pure-science experiment, it may
lead to further applications, but at this stage
these remain unclear.

B What plans do you have for
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Breit-Wheeler process
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Light into

matter

Nature Photon 8 (2014) 496

Oliver Pike explains to Nature Photonics that the so far elusive electron-positron pair production from
light may now be possible using existing technology.

B Why work on Breit-Wheeler pair
production?

The Breit-Wheeler process is the
production of an electron—positron pair
from the collision of two photons. Being
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to assess how existing laser facilities could
be used to study the fundamental processes
relevant to these systems, we were
surprised to discover that Breit-Wheeler
pair production may finally be observable
80 years after it was theoretically predicted.

B How can pair production be done in

the laboratory?

Detecting the Breit-Wheeler process has
proved extremely difficult, because of the
high energy threshold for the reaction: the
product of the two photon energies must
be at least (511 keV)? In the past, this
requirement has been too demanding, and
consequently the process has completely
eluded observation. By using a unique
combination of gamma- and X-ray sources,
our scheme is the first capable of promoting

a sufficient number of photons above
the threshold.

However, the experiment could also be
performed at much smaller optical laser
facilities, such as Astra Gemini and the
Berkeley Lab Laser Accelerator, which are
routinely used to produce high-quality
wakefields. In this case, the hohlraum
radiation could be replaced by X-ray fields
created by laser irradiation of solid targets;
these fields can be both energetic and
intense even for relatively low laser energies
when short pulse lengths are used. Finally,
free-electron laser facilities, such as the
Linac Coherent Light Source, could also
host a variant of this experiment in which
the X-ray beam acts as the second source
of photons.

B What is the expected performance of
pair production?

The number of Breit-Wheeler pairs
produced depends on the system used. The

detection method would be to use a
magnetic field to isolate the positrons, and
then use Cerenkov glass in combination
with an intensified CCD (charge-coupled
device) to collect their signature radiation.

M Are the implications only
fundamental, or are they also applied?
The primary motivation behind this work
is the first-time detection of a fundamental
physical process. In addition, successfully
implementing the experiment would
represent the first two-photon collider,
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Distinctive features of yy — l+l B

® Excluswe productlon of l+l pair  STAR, PRL 127 (2021) 052302
Zha et al., PLB 800 (2020) 135089

Klein et al., CPC 212 (2017) 258
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Distinctive features of yy — l+l B

» Exclusive productlon of l ] pair s, PAL 127 (2021) 052302
Zha et al., PLB 800 (2020) 135089

® Smooth mass Spectrum Klein et al., CPC 212 (2017) 258
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Distinctive features of yy — l+l B

» Exclusive productlon of l ] pair s, PAL 127 (2021) 052302
Zha et al., PLB 800 (2020) 135089

® Smooth mass Spectrum Klein et al., CPC 212 (2017) 258
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Distinctive features of yy — l+l B

« Exclusive productlon of l ] pair s, PAL 127 (2021) 052302
Zha et al., PLB 800 (2020) 135089

® Smooth mass Spectrum Klein et al., CPC 212 (2017) 258
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From UPC to hadronic collisions

Shuai Yang
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Concentrated at low pr
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Unexpectedly observed yy — [7[~ in hadronic collisions
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Modification of lepton pairs

STAR, PRL 121 (2018) 132301
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Modlflcatlcn Of Iepton palrs

STAR, PRL 121 (2018) 132301 ATLAS, PRL 121 (2018) 212301
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Modification of lepton pairs

STAR, PRL 121 (2018) 132301 ATLAS, PRL 121 (2018) 212301
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Puzzle of the phyS|cs orlgln

STAR. PRL 121 (2018) 132301
ATLAS, PRL 121 (2018) 212301

Final-state effect?

Shuai Yang

Collision plane
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Puzzle of the physms orlgln

STAR PRL 127 (2018) 732307 o Zha et al. B 800 220 139
ATLAS, PRL 121 (2018) 212301 aetan ( )
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Experimentally explore the puzzle
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Control b in UPC

Pb > > .Pb. >
Y
> #_

No nucleus breakup

- #"'
Y
- > > -Pb-

Shuai Yang

15



Control b in UPC

Nuclei may exchange soft photon(s) = nuclear dissociation
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Control b in UPC

Nuclei may exchange soft photon(s) = nuclear dissociation
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Control b in UPC

Nuclei may exchange soft photon(s) = nuclear dissociation
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Control b in UPC

Nuclei may exchange soft photon(s) = nuclear dissociation
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Control b in UPC

Nuclei may exchange soft photon(s) = nuclear dissociation
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CMS Supplementary PbPb 5.02 TeV (1.5 nb”
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a spectrum in UPC
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a spectrum in UPC

CMS Supplementary

PbPb 5.02 TeV (1.5 nb™)
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a spectrum VS. neutron multlpllc:lty

o CMS _ PbPb 5.02 TeV (1 5 nb”
i | ononf on1n OnXn
3

S

2 1F \ \ \‘
5 Iywl<2.4 \ ‘ ‘\ ‘\
E i :

: pl>3.5GeV, 'l <2.4 :

F 8<m, <60GeV | ,\

T R R ERTTY R NI

N 1n1n
10°F

® OnOn (fewer neutrons) = XnXn (more neutrons)
% » Tail contribution becomes larger

10—3 L el NPT I A PR T P NPT BTN N PPN | , : , L
% 10* 1073 080—2 10"  10* 10° 080—2 10" 10 10—3 10— 10— %

Shuai Yang CMS, PRL 127 (2021) 122001 17



(acorey vs. neutron multiplicity

Klein et al., Comput. Phys. Commun.
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® Strong neutron multiplicity dependence of (acore)
* b dependence of initial photon pr
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(acorey vs. neutron multiplicity

Klein et al., Comput. Phys. Commun.
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Roadmap to QGP EM properties
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Roadmap to QGP EM properties

® The b dependence of photon
pt should be considered to

explore QGP EM properties
» RHIC run 2023-2025

* LHC run3 & 4

® {pT) or {a) W.r.t. event plane

* In plane > out of plane = Magnetic

field
* |n plane < out of plane = Multiple
scattering
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® First observation of Breit-Wheeler
process in non-UPC
* Probe QGP medium using yy — 7]~

Shuai Yang
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® First observation of Breit-Wheeler
process in non-UPC
* Probe QGP medium using yy — 7]~
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— Au+Au Cocktail

® First observation of b dependence 'cus R
of photon pr : s b | +

* Controllable reference for probing N S * B
QGP EM effects <4 . N _
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Summary

10

® First observation of Breit-Wheeler
process in non-UPC
Probe QGP medium using yy — [t~

10!

dN/dp,, ((GeV/e)h
=

® First observation of b dependence 'cus R

of photon pr : e op. | +

* Controllable reference for probing :13 ...... o N W
QGP EM effects Sl T o

__ICtI:nt'ralityl: 60—80% o |
" Solid: Au+Au 200 GeV 77 0.76-1.2 GeV/c? x 1072

F Open: U+U 193 GeV ¢ 0 1.2-2.6 GeV/c® x 10
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Onon,  On1,  Onx,  Inz,  Tnx, )(n)(n

® Quantitatively study QGP EM properties at RHIC and LHC

INn next few years
Shuai Yang
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Vacuum birefringence

Vacu um bi refri n gence - Predicted in 1936 by Neutron stars are the very dense remnant cores of massive stars that have

Heisenberg & Euler. Index of refraction for y

interaction with B field depends on relative
polarization anglei.e. Ad =0y — 0, # 0

Discovered on Nov. 2, 2016

Requires extremely strong B

Shuai Yang Mon. Notices Royal Astron. Soc., 465 (2017) 492 22

exploded as supernovae at the ends of their lives.

They also have extreme magnetic fields — billions of times stronger than that
of the Sun — that permeate their outer surface and surroundings. These fields
are so strong that they even affect the properties of the empty space around
the star.

Normally a vacuum is thought of as completely empty, and light can travel

through it without being changed.

But in quantum electrodynamics (QED), the quantum theory describing the
interaction between photons and charged particles such as electrons, space is
full of virtual particles that appear and vanish all the time.

Very strong magnetic fields can modify this space so that it affects the
polarization of light passing through it.

“According to QED, a highly magnetized vacuum behaves as a prism for the
propagation of light, an effect known as vacuum birefringence,” said team
member Dr. Roberto Mignani, from INAF Milan in Italy.

Among the many predictions of QED, however, vacuum birefringence so far
lacked a direct experimental demonstration.

Attempts to detect it in the laboratory have not yet succeeded in the 80 years
since it was predicted in by Werner Heisenberg and Hans Heinrich Euler.

“This effect can be detected only in the presence of enormously strong
magnetic fields, such as those around neutron stars,’ said team member Dr.
Roberto Turolla, from the University of Padua in Italy.

“This shows, once more, that neutron stars are invaluable laboratories in
which to study the fundamental laws of nature”


https://arxiv.org/abs/1610.08323

Vacuum birefringence in lab

—

® Photon polarization direction ( &)

Is parallel to f
® Recently realized, Ac =6y -0, #0
lead a cos(4A¢) modulation In
polarized yy — [T]~
. cosRQAQ) x mlzlp%’l
Ap = Ap[(IT +17), 1T —17)]

Shuai Yang ~ Ap[(IT +17),17]

C. Lietal, Phys. Lett. B 795, 5

76 (2019)

Brandenburg et al., EPJA 57 (2021) 299

—F --B ®z

&1 || &2 = —(cos 4A0)
&1 L & — +{cosdA¢)

b

Optical Theorem

A
IQD
i "
1

Breit-Wheeler Process

Adlrmm)

Light-by-Light Scattering
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Vacuum birefringence in lab
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2 A = ¢ee ¢e

® First earth-based observation (6.7¢ level) of vacuum

birefringence

» Experimental evidence of linearly polarized photons

Shuai Yang
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Determine neutron multiplicity

100 CMS bPb 5.02 TeV CMS PbPb 5.02 TeV
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Plus

® Straight cuts to disentangle neutrons
* OnOn, On1n, OnXn, 1n1n, 1TnXn, XnXn (X=2)

Minus

% erneutrons 0000 = %
More neutrons %

Shuai Yang % CMS, PRL 127 (2021) 122001 25



a spectrum VS. neutron multlpllc:lty
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- a sSpectrum becomes broader

’% - Seems has depletion in the very small a
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® 0OnOn (fewer neutrons) = XnXn (more neutrons) %



