

Double charm tetraquark in the molecular picture Qian Wang (王倩)

第一届"粤港澳"核物理论坛 2022年7月2日-6日,广东,珠海

<u>Outline</u>

- A small review of exotic hadrons
- The observation of double charm tetraquark
- The line shape of double charm tetraquark
- The isospin property of charm tetraquark
- Summary and outlook

Du, Baru, Dong, Filin, Guo, Hanhart, Nefediev, Nieves, QW, PRD105(2022)014024 Baru, Dong, Du, Filin, Guo, Hanhart, Nefediev, Nieves, QW, hep-ph/2110.07484 (PLB in press) Shi, Wang, QW, hep-ph/2205.05234 Hu, Liao, Wang, QW, Xing, PRD104(2021)L111502 张辉报告: 重离子对撞中奇特强子态的产生 Liu, Zhang, Hu, QW, PRD105(2022)076013 张振宇报告: 机器学习在强子物理中的应用

A small review of exotic hadrons

A small review of exotic hadrons

2004 Nobel Prize in Physics

David J.Gross Frank Wilczek H.David Politzer

Asymptotic freedom

Perturbative

P_c@2019

X(2900)@2020

 T_{cc}^+ @2021

<u>A small review of exotic hadrons</u>

- H.X. Chen, W. Chen, X. Liu, S.L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639(2016)1-121
- H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, A review of the open charm and bottom systems, Rept. Prog.Phys. 80(2017) 076201
- Y.B.Dong, A. Faessler, V.E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological lagrangians, Prog.Part.Nucl.Phys.94(2017)282
- R.F.Lebed, R.E. Mitchell and E.S.Swanson, Prog.Part.Nucl.Phys.93(2017)143-194
- F.K. Guo, C.Hanhart, Ulf-G. Meissner, Q. Wang, Q. Zhao, B.S. Zou, Hadronic molecules, Rev.Mod.Phys.90(2018)015004
- Y.R.Liu, H.X.Chen, W. Chen, X.Liu, S.L. Zhu, Pentaquark and Tetraquark states, Prog.Part. Nucl. Phys, 107(2019)237
- R.M.Albuquerque, J.M.Diak, K.P.Khemchandani, A.Martinez Torres, F.S. Navarra, M.Nielsen and C.M. Zanetti, J.Phys.G46(2019)093002
- R.M.Yamaguchi, A.Hosaka, S.Takeuchi and M.Takizawa, J.Phys.G47(2020)053001
- F.K. Guo, X.H.Liu, S.Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog.Part.Nucl. Phys. 112(2020)103757
- N.Brambilla, S.Eldelman, C.Hanhart, A.Nefediev, C.P.Shen, C.E.Thomas, A.Vairo and C.Z. Yuan, Phys.Rept.873(2020)1-154

Before the observation

• E. Braaten, et.al., PRD103(2021)016001, Not bound

Bound or not?

- J. Chen et.al., CPC45(2021)043102, Not bound
- Faustov et. al., universe, not bound
- M.Z.Liu et. al., PRD102(2020)091502, OBE, loosely bound
- Q.Lv et.al., PRD102(2020)034012
- C. Deng, et.al., EPJA56(2020),9, deeply bound -150keV
- P. Junnarkar et.al., PRD99(2019)034057
- W. Park et.al., NPA983(2019)1
- Z.G. Wang ACTA Physica Polonica B(2018) bound
- E.J.Eichten et.al., PRL119(2017)202002, not bound
- M. Karliner et.al., PRL2017, 7MeV above D^0D^{*+} threshold
- Lattice QCD simulation, PLB729(2014)85, $j^P = 1^+$, I = 0 attractive
- G.Q. Feng, et.al., arXiv:1309.7813(2013), bound
- N.L., et al., PRD88(2013)114008, loosely bound

•

After the observation

SU(3) flavor partners

- M.Karliner, et.al., PRD105(2022)034020
- H.W.Ke, et.al., PRD105(2022)114019
- L.R.Dai, et.al., PRD105(2022)074017
- K. Chen, et.al., PRD105(2022)096004
- G. Yang, et.al., PRD104(2021)094035
-

Other partners

- Z.Y. Yang, et.al., arXiv: 2206.06051
- S.Q. Luo, et.al., arXiv: 2206.04586
- S.Q.Luo, et.al., PRD105(2022)074033
- X.Z.Ling, et.al., EPJC81(2021)1090
- X.Z.Weng, et.al., PRD105(2022)034026
- F.L.Wang et.al., PRD104(2021)094030
- Y.W.Pan et.al., PRD105(2022)114048
- C.W.Shen et.al., PLB831(2022)137
- T.Guo et.al., PRD105(2022)014021
- Q.Qin et.al., PRD105(2022)L031902
- R.Chen et.al., PRD104(2021)114042
-

HQSS partners

- H.W.Ke, et.al., EPJC82(2022)144
- M.J.Zhao, et.al., PRD105(2022)096016
- C.R.Deng, et.al., PRD105(2022)054015
-

Dynamics

- S.Y. Chen, et.al., arXiv: 2206.06185
- Z.Y.Lin, et.al., arXiv: 2205.14628
- M.Albaladejo et.al., PLB829(2022)137052
- J.B. Cheng, et.al., arXiv: 2205.13354
- N.N.Achasov, et.al., PRD105(2022)096038
- J. He et.al., EPJC82(2022)387
- J.H.Liu et.al., PRD105(2022)076013
- L.Y.Dai et.al., PRD105(2022)L051507
- L. Meng et.al., PRD104(2021)051502
- X.Z.Ling et.al., PLB826(2022)136897
- M.Y. Yan et.al., PRD105(2022)014007
- A. Feijoo et.al., PRD104(2021)114015
-

Isospin property and other properties

- J.Shi, et.al., arXiv: 2205.05234
- 8

thr.
$$[B + \bar{B} + \pi] > \text{thr} \cdot [B^* + \bar{B}^*]$$

> thr. $[B^* + \bar{B}]$
thr. $[D + \bar{D} + \pi] < \text{thr} \cdot [D^* + \bar{D}]$

< thr. $[D^* + \overline{D}^*]$

Below $D^{*+}D^0$ threshold

- Bound or not?
- a large negative effective range
- Isospin? Isospin breaking?

Meng et.al., 2017.14784

• Relation to the X(3872)

$$\tau_{1} \cdot \tau_{2}^{\star} = -\frac{3}{4} \quad I = 0$$

$$\tau_{1} \cdot \tau_{2}^{\star} = \frac{1}{4} \quad I = 1$$

$$D^{*}D?$$

• Unexpected large width

 $\Gamma(T_{cc}^+) \sim 400 \text{ keV}$

273keV Meng et.al., 2017.14784

• Three-body effect

One-channel Effective Range Expansion (ERE)

$$-\frac{2\pi}{\mu} \operatorname{Re}[T(E)^{-1}] = k \cot \delta = \frac{1}{a} + \frac{1}{2}rk^2 + \mathcal{O}(k^4)$$

Scattering length *a*: a > 0 mild attractive, a < 0 repulsive

Effective range *r*

$$a = -2\left(\frac{1-Z}{2-Z}\right)\frac{1}{\gamma} + \mathcal{O}\left(\frac{1}{\beta}\right)$$

Molecule: $a \to -\frac{1}{\gamma} \quad \& \quad r \to \frac{1}{\beta} \quad Z \to 0$
Compact: $a \to -\frac{1}{\beta} \quad \& \quad r \to -\infty \quad Z \to 1$
 $-r < 11.9(16.9) \text{ fm} \quad 90(95) \% \text{ CL}.$
 $Z < 0.52(0.58) \text{ fm} \quad 90(95) \% \text{ CL}.$

$$r = -\left(\frac{Z}{1-Z}\right)\frac{1}{\gamma} + \mathcal{O}\left(\frac{1}{\beta}\right)$$

w.f. renormalization factor: Z The probability to find HM in w.f.:

$$\bar{X}_A = \left(1 + 2\left|\frac{r}{a}\right|\right)^{-1/2}$$

Compact tetraquark?!

A large negative r?!

Regular potential

One channel

No CDD pole

Baru, Dong, Du, Filin, Guo, Hanhart, Nefediev, Nieves, QW, hep-ph/2110.07484 (PLB in press)

two-channel scattering amplitude

A large negative r?!

$$f_{ab}(E) = -\frac{g_a g_b}{2D(E)}$$

Denominator

$$D(E) = E - E_f + \frac{i}{2} \left(g_1^2 k_1 + g_2^2 k_2 + \sum_i \Gamma_i(E) \right)$$

The three momentum

$$k_a = \sqrt{2\mu_a(E - \delta_a)}\Theta(E - \delta_a) + i\sqrt{2\mu_a(\delta_a - E)}\Theta(\delta_a - E)$$

The pole position on physical sheet

$$E_p = \frac{E_f}{2} + \frac{1}{2}(g_1^2 \gamma_1 + g_2^2 \gamma_2)$$

Large correlation

Baru, Dong, Du, Filin, Guo, Hanhart, Nefediev, Nieves, QW, hep-ph/2110.07484 (PLB in press)

To remove correlation

A large negative r?!

$$D(E) = E - E_p + \frac{i}{2} \left(g_1^2(k_1 - i\gamma_1) + g_2^2(k_2 - i\gamma_2) + \sum_i \Gamma_i(E) \right)$$

Expand in terms of k_1

$$k_{2} = i\sqrt{2\mu_{2}\left(\delta_{2} - \frac{k_{1}^{2}}{2\mu_{1}}\right)} = i\sqrt{2\mu_{2}\delta_{2}} - \frac{i}{2}\sqrt{\frac{\mu_{2}}{2\mu_{1}^{2}\delta_{2}}}k_{1}^{2} + \mathcal{O}\left(\frac{k_{1}^{4}}{\mu_{1}^{2}\delta_{2}^{2}}\right)$$

$$a = -\frac{g_{1}^{2}}{\gamma_{1}^{2}/\mu_{1} + g_{1}^{2}/\gamma_{1} + g_{2}^{2}(\gamma_{2} - \sqrt{2\mu_{2}\delta_{2}}) + i\Gamma_{\text{inel}}}$$

$$r = -\frac{2}{\mu_{1}g_{1}^{2}} - \frac{g_{2}^{2}}{g_{1}^{2}}\sqrt{\frac{\mu_{2}}{2\mu_{1}^{2}\delta_{2}}} \qquad \text{A large negative correction!}$$

$$\bar{X}_{A} = \left(1 + 2\left|\frac{r}{a}\right|\right)^{-1/2}$$

Baru, Dong, Du, Filin, Guo, Hanhart, Nefediev, Nieves, QW, hep-ph/2110.07484 (PLB in press)

<u>Heavy quark symmetry</u>

What can we learn for charmonium-like

states?

 $\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$ $\frac{1}{2} \otimes 1 = \frac{1}{2} \oplus \frac{3}{2}$

Why the D^*D molecule?

- Close to the D^*D thresholds
- Approximate 90% of $D^0 D^0 \pi^+$ events contain a D^{*+}
- Z<0.52

Wave functions for isospin singlet and triplet

$$|D^*D, I = 0\rangle = -\frac{1}{\sqrt{2}} \left(D^{*+}D^0 - D^{*0}D^+ \right)$$
$$|D^*D, I = 1\rangle = -\frac{1}{\sqrt{2}} \left(D^{*+}D^0 + D^{*0}D^+ \right)$$

$$V_{\text{CT}}^{I=0}(D^*D \to D^*D, J^P = 1^+) = v_0$$

 $V_{\text{CT}}^{I=1}(D^*D \to D^*D, J^P = 1^+) = v_1$

Three-body cut has to be considered

Double charm tetra quark in molecular picture

$D^0 D^0 \pi^+$ mass distribution

Du et al., PRD105(2022)014024

LSE

The only calculation with full 3-body cut up to now

Double charm tetra quark in molecular picture

$D^0 D^0 \pi^+$ mass distribution

Du et al., PRD105(2022)014024

Schemes	Potential	Pole (keV)	Width (keV)
Scheme I	$\Gamma_{D^{*+}} = 82.5 \text{ keV} \Gamma_{D^{*0}} = 53.7 \text{ keV}$	$-368^{+43}_{-42} - i(37 \pm 0)$	74
Scheme II	No OPE Dynamical widths of <i>D</i> *	$-333_{-36}^{+41} - i(18 \pm 1)$	36
Scheme III	OPE Dynamical widths of <i>D</i> *	$-356_{-38}^{+39} - i(28 \pm 1)$	56

Width is not as large as 400keV.

Du et al., PRD105(2022)014024

Low energy expansion of the scattering amplitude

$$T_{D^{*+}D^{0} \to D^{*+}D^{0}}(k) = -\frac{2\pi}{\mu_{c0}} \left(\frac{1}{a_{0}} + \frac{1}{2}r_{0}k^{2} - ik + \mathcal{O}(k^{4}) \right)$$

Effective range

Du et al., PRD105(2022)014024

Scheme I: Only contact potentials

$$T_{D^{*+}D^{0} \to D^{*+}D^{0}}^{-1}(M) = \frac{2}{v_{0}} + (J_{1}(M) + J_{2}(M)) \qquad E = M - M_{\text{thr.1}}$$

 $J_2(E) = \frac{\Lambda\mu}{\pi^2} - \frac{2\mu^2 E}{\pi^2 \Lambda} + \frac{2\Delta\mu^2}{\pi^2 \Lambda} - \frac{\mu\sqrt{2\mu\Delta}}{2\pi} + \frac{\mu E\sqrt{2\mu\Delta}}{4\pi\Delta} + \mathcal{O}(E^2)$

Isospin violation

 $J_1(E) = \frac{\Lambda\mu}{\pi^2} - \frac{2\mu^2 E}{\pi^2 \Lambda} + i \frac{\sqrt{2\mu E\mu}}{2\pi} + \mathcal{O}(E^2)$

$$\Delta r_{\rm IV} \equiv -\sqrt{\frac{1}{2\mu\Delta}} = -3.78 \text{ fm}$$

Du et al., PRD105(2022)014024

Compositeness

$$\bar{X}_A = \left(1 + 2\left|\frac{r'_0}{\text{Re}a_0}\right|\right)^{-1/2}, \quad r'_0 = r_0 - \Delta r_{\text{IV}}$$

$$\Delta r_{\rm IV} \equiv -\sqrt{\frac{1}{2\mu\Delta}} = -3.78 \text{ fm}$$

Scattering length and effective range

Schemes	a (fm)	<i>r</i> ₀ (fm)	r'_0 (fm)	$ar{X}_A$
Scheme I	$\left(-6.31_{-0.45}^{+0.36}\right) + i\left(0.05_{-0.01}^{+0.01}\right)$	-2.78 ± 0.01	1.00 ± 0.01	0.87 ± 0.01
Scheme II	$\left(-6.64_{0.50}^{+0.36}\right) - i\left(0.10_{-0.02}^{+0.01}\right)$	-2.80 ± 0.01	0.98 ± 0.01	0.88 ± 0.01
Scheme III	$\left(-6.72_{-0.45}^{+0.36}\right) - i\left(0.10_{-0.03}^{+0.03}\right)$	-2.40 ± 0.01	1.38 ± 0.01	0.84 ± 0.01

OPE contribute 0.40

HQSS partner

Effective d.o.f. for (D, D^*) and (D, D^*) scattering

Du et al., PRD105(2022)014024

$$\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1 \longrightarrow C_0, \quad C_1 \longrightarrow v_0 \equiv C_0 + C_1$$

 $V^{I=0}(D^*D^* \to D^*D^*, J^P = 1^+) = V^{I=0}(D^*D \to D^*D, J^P = 1^+) = v_0$

Out of control from current Exp. data

$$V^{I=0}(D^*D^* \to D^*D, J^P = 1^+) = C_0 - C_1$$

Neglect $D^*D \rightarrow D^*D^*$ and widths of D^* ($\Lambda = 0.5$ GeV)

$$\delta_{cc}^{*+} \equiv m_{T_{cc}^{*+}} - m_{D^{*+}} - m_{D^{*0}}$$

- Scheme I $\delta_{cc}^{*+} = -1444(61) \text{ keV}$
- Scheme II $\delta_{cc}^{*+} = -1138(50) \text{ keV}$
- Scheme III $\delta_{cc}^{*+} = -503(40) \text{ keV}$

Two-body approx., two Λ, M.Albaladejo, PLB829(2022)137052

Width and strangeness, Dai, PRD105(2022)016029

The isospin property of double charm tetraquark

Hu, Liao, Wang, QW, Xing, PRD104(2021)L111502

22

The isospin property of double charm tetraquark

Wave function for both isospin singlet and isospin triplet

$$|T_{cc}^{+}\rangle = -\frac{1}{\sqrt{2}} (|D^{*+}\rangle |D^{0}\rangle - |D^{*0}\rangle |D^{+}\rangle), \quad I = 0 \quad I_{z} = 0$$

$$|T_{cc}^{'++}\rangle = |D^{*+}\rangle |D^{+}\rangle, \quad I = 1 \quad I_{z} = +1$$

$$|T_{cc}^{'+}\rangle = -\frac{1}{\sqrt{2}} (|D^{*+}\rangle |D^{0}\rangle + |D^{*0}\rangle |D^{+}\rangle), \quad I = 1 \quad I_{z} = 0$$

$$|T_{cc}^{'0}\rangle = |D^{*0}\rangle |D^{0}\rangle, \quad I = 1 \quad I_{z} = -1$$

$$X(3872)[c\bar{c}q\bar{q}] \rightarrow J/\psi[c\bar{c}]3\pi$$

Determine isospin
from hidden charm
channel

Decay amplitude

$$\mathcal{M} = \mathcal{M}_{1} + \mathcal{M}_{2} \equiv \frac{g_{D^{*+}D_{0}T_{cc}^{+}}}{\sqrt{1+r^{2}}} \left(\mathcal{M}_{1}' + r\mathcal{M}_{2}'\right)$$
$$= \frac{1}{2\sqrt{1+r^{2}}} \left[(1+r)\mathcal{M}_{I=1} + (1-r)\mathcal{M}_{I=0} \right]$$

 $\mathcal{M}'_1: \quad T^+_{cc} \to D^{*0}D^+ \to D^+\pi^0 D^0 \qquad \qquad \mathcal{M}'_2: \qquad T^+_{cc} \to D^{*+}D^0 \to D^+\pi^0 D^0$

$$r \equiv \frac{g_{D^{*0}D^+T_{cc}^+}}{g_{D^{*+}D^0T_{cc}^+}} \qquad r = 1 \to I = 1 \qquad r = -1 \to I = 0$$

Shi, Wang, QW, hep-ph/2205.05234

<u>The isospin property of double charm tetraquark</u>

$$|\mathcal{M}|^{2} = \frac{g_{D^{*+}D_{0}T_{cc}^{+}}}{1+r^{2}} \left[|\mathcal{M}_{1}'|^{2} + r^{2}|\mathcal{M}_{2}'|^{2} + r\left(\mathcal{M}_{1}'\mathcal{M}_{2}'^{*} + \mathcal{M}_{1}'^{*}\mathcal{M}_{2}'\right) \right]$$

$$A \equiv \frac{N_1 + N_3 - N_2 - N_4}{N_1 + N_3 + N_2 + N_4}$$

 $u_b = 4.03 \text{ GeV}^2$ $u_c = 4.05 \text{ GeV}^2$

Shi, Wang, QW, hep-ph/2205.05234

The isospin property of double charm tetraquark

Shi, Wang, QW, hep-ph/2205.05234

- it also works for other open heavy flavor exotics
- The isospin property of hidden charm/bottom exotics can also be determined in hidden charm/bottom plus pion channels

Summary and outlook

- T_{cc}^+ exhibits as either a bound state or a virtual state
- A large negative effective range is from isospin violation
- Both isospin singlet and triplet double charm tetra quark could exist
- The width of T_{cc}^+ is 56 keV
- The fully calculation of the three-body cut
- Predict the pole position of the HQSS partner T_{cc}^{*+}
- Provide a method to measure the isospin of the double charm tetra quark

Thank you for your attention!