

Neutrino-¹²C & ¹³C scattering in *No-Core Configuration Interaction*

Xingbo Zhao (赵行波) **Collaborators: He Li (李贺) Dongliang Fang(房栋梁) Peng Yin(尹鹏) Pieter Maris James P. Vary**

July 3, 2022

Outline

- ➢ **Neutrino-C scattering in Jiangmen Underground Neutrino Observatory (JUNO)**
- ➢ **No-core configuration interaction (NCCI) method**
- ➢ **Daejeon16 interaction**
- ➢ **Current progress @ Sugon supercomputer**
- ➢ **Next plan and conclusions**

Main Physics goal in JUNO

❖ **Determination of the Neutrino Mass Ordering**

Flavor eigenstates

Reactor neutrinos from Taishan & Yangjiang

Mass eigenstates

$$
\Delta m_{21}^{2} = 7.54 \left(1.00_{-0.029}^{+0.034} \right) \times 10^{-5} \text{ eV}^{2},
$$

\n**Positive/Negative?**
\n
$$
\begin{cases}\n\sin^{2} \theta_{12} = 0.308 \left(1 \pm 0.055 \right), \\
\left| \Delta m_{32}^{2} \right| = 2.39 \left(1 \pm 0.025 \right) \times 10^{-3} \text{ eV}^{2}, \\
\sin^{2} \theta_{23} = 0.437 \left(1.00_{-0.053}^{+0.076} \right), \\
\sin^{2} \theta_{13} = 0.0234 \left(1.00_{-0.091}^{+0.085} \right).\n\end{cases}
$$

Neutrino oscillation parameters Assume (m1<m2<m3)

曹俊.中国科学:物理学 力学 天文学(2014)

Main Physics goal in JUNO

❖ **Mass Ordering Determination – Experiments: Reactor Neutrino Events**

JUNO Detector Concept

Numbers of neutrino events in JUNO for a Supernova at a typical distance of 10 kpc(about 3.26x10⁴ light-years)

JUNO Central Detector

Fengpeng An et al., J. Phys. G 43 (2016)

Wenqiang Gu, Status and Prospects of JUNO Shang Hai Jiao Tong University (2019)

Main Physics goal in JUNO

❖ **Mass Ordering Determination –Theoretical Calculations: cross-sections**

Neutrino events + Neutrino-nuclei scattering cross-sections \rightarrow Neutrino energy spectra **From detector From theoretical calculations Mass ordering**

Fengpeng An et al., J. Phys. G 43 (2016)

Phenomenological models calculations

❖ **Neutrinos-¹²C cross-sections calculations with phenomenological models**

Neutrinos-¹²C cross-sections from different models

Shell Model (SM) Random Phase Approximation (RPA) Quasi-particle RPA (QRPA) Continuum RPA (CRPA)

a: C.Athanassopoulos and the LSND collaboration, Phys. Rev. C (1997),

b: R.C.Allen et al., Phys. Rev. Lett (1990),

c: C.Athanassopoulos and the LSND collaboration, Phys. Rev. C (1997),

d: B.E.Bodmann and the KARMEN collaboration, Phys. Lett. B (1994)

The results from RPA calculations are far away from experimental data, while the SM calculations are much more close to experimental data

Phenomenological models calculations

❖ **Neutrino-¹²C & ¹³C cross-sections calculations with shell model**

Neutrino-¹²C charge current cross-sections from shell model with SFO interaction had a good agreement with experimental data

 $B(M1)$ and $B(GT)$ strengths of ¹³C from shell model with SFO & CK interaction were still a little far away from experimental data

> *T. Suzuki et al., Phys. Rev. C (2012) T. Suzuki et al., Phys. Rev. C (2019)*

Introduction of NCCI/NCSM

❖ **No-Core Configuration Interaction / No-Core Shell Model calculations**

➢ **Given a Hamiltonian operator**

$$
\widehat{H} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)}{2mA} + \sum_{i < j}^A V_{ij} + \sum_{i < j < k} V_{ijk} + \cdots
$$

➢ **Solve the eigenvalue problem for wavefunction of A nucleons**

$$
\widehat{H}\Psi_{\alpha_1\cdots\alpha_A} = E\Psi_{\alpha_1\cdots\alpha_A}
$$

- \triangleright Expand wavefunction in basis states $|\psi\rangle = \sum \widehat{a}_i |\phi_i\rangle$
- **Express Hamiltonian in basis** $\langle \phi_i | \hat{H} | \phi_i \rangle = H_{ii}$
- ➢ **Diagonalize Hamiltonian matrix**
- ➢ **No-Core: All A nucleons are treated the same**
- ➢ **Complete basis ---- exact result**
- ➢ **In practice**
	- **1. truncate basis**
	- **2. study behavior of observables as function of truncation**
- ➢ **Computational challenge**
	- **1. construct large (10¹⁰** ✖ **10¹⁰) sparse symmetric matrix**
	- **2. obtain lowest eigenvalues & eigenvectors corresponding to low-**

lying spectrum and eigenstates

Barrett et al., Progress in Particle and Nuclear Physics (2013) P. Maris, NCSM_NICC_YTT(2021)

Xingbo Zhao (IMP) Zhuhai, July 3, 2022 8

For application to hadron structure see Jiangshan Lan's talk on BLFQ (Monday afternoon)

Introduction of NCCI/NCSM

- ❖ **MFDn (Many Fermion Dynamics for Nuclear Structure) code**
	- ➢ **Calculate the approximate low-lying spectrum (eigenvalues) and** corresponding wavefunctions ψ (eigenvectors) of a $(Z + N) = A$ -body **system of Z protons and N neutrons using 2-body (and optional 3-body) interactions in a finite basis in configuration space (sparse matrix)**
	- ➢ **Evaluate for the requested number of states (eigenvalues)**
		- **1. orbital occupation probabilities**
		- **2. One-Body Density Matrix Elements (OBDMEs)**
		- **3. expectation values of total spin J² and isospin T²**

(for T² assuming proton and neutron radial wavefunctions are the same)

- **4. expectation values for arbitrary scalar 2-body operators**
- **5. for Harmonic Oscillator (HO) basis**

static: quadrupole moments, M > 0: magnetic moments, r² …

transitions: M1, E2, and GT(assuming isospin symmetry)

Previous calculations from Ab initio NCSM

❖ **Neutrino-¹²C cross-sections calculations with NCSM**

AV8': NN potential CD-Bonn: NN potential AV8' + TM'(99): NN potential + 3N NN potential

The B(M1) calculated values from AV8', CD-Bonn, AV8' + TM'(99) were still a little far away from experimental data

Experimental and calculated B(M1;0⁺0 \rightarrow 1⁺1) values for ¹²C

	CD -Bonn			$AV8' + TM'(99)$	
Interaction	$2\hbar\Omega$	$4\hbar\Omega$	$6\hbar\Omega$	$4\hbar\Omega$	Experiment
(ν_e, e^-)	2.27	3.2	3.69	6.8	$8.9 \pm 0.3 \pm 0.9$ [a]
(ν_{μ}, μ^{-})	0.168	0.275	0.312	0.537	$0.56 \pm 0.08 \pm 0.1$ [b]
μ -capture	1.46	2.07	2.38	4.43	6.0 ± 0.4 [c]

Predicted weak interaction rates of ¹²C. The units are 10⁻⁴² cm² for the (v_e, e^-) **DAR cross section, 10-42 cm² for the** (ν^µ , µ [−]) **DIF cross section, and 10³ sec-1 for** muon capture

a:LSND Collaboration, L. B. Auerbach et al., Phys. Rev. C 64, 065501 (2001).

- b:LSND Collaboration, L. B. Auerbach et al., Phys. Rev. C 66, 015501 (2002).
- c: G. H. Miller et al., Phys. Lett. B 41, 50 (1972);

Hayes et al., Phys. Rev. Lett (2003)

Barrett et al., , Progress in Particle and Nuclear Physics (2013)

Daejeon16 interaction

❖ **Daejeon16 (Daejeon, the name of a city in South Korea, where the main developments took place. PET tuned up to ¹⁶O) based on chiral N3LO NN potential**

PET angles (in degrees) defining the Daejeon16 NN interaction in various NN partial waves.

Shirokov et al., Physics Letters B(2016) Machleidt et al., Phys. Rept. (2011) Kim et al., arXiv:1910.04367 (2019)

Improvements of our calculations

From the previous NCSM calculations of neutrino-¹²C scattering, we can infer that the precision of neutrino-¹²C cross-sections with Ab initio NCSM/NCCI, could be improved by applying new interaction(with the contributions from 3N force), increasing the basis space, including more reaction channels and excited states.

- ❖ **Highlights in our calculations**
	- **1. New interaction – Daejeon16**
	- **2. Larger basis space for calculations(up to Nmax=10)**

Dimensions of many body matrix in Nmax6: 3.26x10⁷ ; Nmax10: 7.83x109

- **3. Higher excitation energy (at least 20 MeV~ 30 states)**
- **4. More channels(neutral current, charged current, nucleon knock-out)**
- **5. Including neutrino-¹³C scattering(natural abundance of ¹³C is 1.07%)**
- **6. Under different hw values, to check the convergence of calculated results**
- **7. Cross sections as function of neutrino energy at reactor neutrino energies**

Sugon high performance computer

• **Hygon CPU node: 32 cores, 128Gb memory**

• **Kunshan center: more than 10,000 nodes**

• **Taiyuan center: ~ 7000 nodes**

❖ **Scaling test of MFDn code on Sugon high performance computers**

OMP_Threads=4, number of nodes up to 790 Number of nodes =790, OMP_Threads up to 8

Current progress

❖ Ground state energy from Daejeon16

NCCI+Daejeon16 has good performance on the calculations of binding energies

We use a simple 3-point exponential extrapolation from the reference paper

$$
E^{\hbar\omega}(N_{\text{max}}) = E^{\hbar\omega}_{\infty} + a e^{(-b N_{\text{max}})}
$$

P. Maris et al., Phys. Rev. C (2021)

❖ **Energy spectra from Daejeon16**

0+ The low lying spectra of ¹²C & ¹³C from Daejeon16 have good agreement with experimental data

❖ **Comparisons on ground state energies and point proton radii between Daejeon16 and other Chiral EFT interactions**

Ground state energies and point proton radii of Carbon-11, 12, 13 from Deajeon16 in good agreement with experiment, even better than NN + NNN interaction.

> *P. Maris et al., Phys. Rev. C (2021) P. Navrátil et al., Phys. Rev. Lett (2007)*

❖ **Comparisons on ground state energies and point proton radii between Daejeon16 and other Chiral EFT interactions**

Ground state energies and point proton radii of Boron 11, 12, 13 & Nitrogen 12, 13 from Daejeon16 in good agreement with experiment, even better than chiral N3LO interaction.

> *P. Maris et al., Phys. Rev. C (2021) M.Mosavi et al., New Astronomy (2018)*

❖ **Comparisons on M1 and E2 transitions between**

NCCI-Daejeon16 and other calculations

The CK-POT, CK, SFO interactions were performed in shell model calculations

Hw = 15 MeV in Daejeon16 and chiral interactions

Electromagnetic transitions of Carbon12 & 13 from Daejeon16 are not so close to experiment, but reasonable.

> *P. Navrátil et al., Phys. Rev. Lett (2007) T. Suzuki et al., Phys. Rev. C (2012)*

H. Sagawa et al., EPJ Web of Conferences (2018)

Next plan

1. The Semi-leptonic weak nuclear operators are one body and can be expressed as a product of space-spin and isospin operators (7 basic operators)

$$
\Delta_{J}^{M_{J}}(q\mathbf{x}) \equiv \mathbf{M}_{JJ}^{M_{J}}(q\mathbf{x}) \cdot \frac{1}{q} \vec{\nabla},
$$
\n
$$
\Delta_{J}^{M_{J}}(q\mathbf{x}) \equiv -i \left[\frac{1}{q} \vec{\nabla} \times \mathbf{M}_{JJ}^{M_{J}}(q\mathbf{x}) \right] \cdot \frac{1}{q} \vec{\nabla} = [J]^{-1} \left[-J^{1/2} \mathbf{M}_{JJ+1}^{M_{J}}(q\mathbf{x}) + (J+1)^{1/2} \mathbf{M}_{JJ-1}^{M_{J}}(q\mathbf{x}) \right] \cdot \frac{1}{q} \vec{\nabla},
$$
\n
$$
\Sigma_{J}^{M_{J}}(q\mathbf{x}) \equiv \mathbf{M}_{JJ}^{M_{J}}(q\mathbf{x}) \cdot \vec{\sigma},
$$
\n
$$
\Sigma_{J}^{'M_{J}}(q\mathbf{x}) \equiv -i \left[\frac{1}{q} \vec{\nabla} \times \mathbf{M}_{JJ}^{M_{J}}(q\mathbf{x}) \right] \cdot \vec{\sigma} = [J]^{-1} \left[-J^{1/2} \mathbf{M}_{JJ+1}^{M_{J}}(q\mathbf{x}) + (J+1)^{1/2} \mathbf{M}_{JJ-1}^{M_{J}}(q\mathbf{x}) \right] \cdot \vec{\sigma},
$$
\n
$$
\Sigma_{J}^{'M_{J}}(q\mathbf{x}) \equiv \left[\frac{1}{q} \vec{\nabla} M_{J}^{M_{J}}(q\mathbf{x}) \right] \cdot \vec{\sigma} = [J]^{-1} \left[(J+1)^{1/2} \mathbf{M}_{JJ+1}^{M_{J}}(q\mathbf{x}) + J^{1/2} \mathbf{M}_{JJ-1}^{M_{J}}(q\mathbf{x}) \right] \cdot \vec{\sigma},
$$
\n
$$
\Omega_{J}^{M_{J}}(q\mathbf{x}) \equiv M_{J}^{M_{J}}(q\mathbf{x}) \vec{\sigma} \cdot \frac{1}{q} \vec{\nabla},
$$

- **2. Write the operators in the basis used in NCCI**
- **3. Convolute with A-body wave functions from NCCI and obtain scattering matrix element**
- **4. Calculate scattering cross sections**

 $M^{M_J}_t (q\mathbf{x})$,

Next plan

❖ **From A-body wave functions to cross sections**

Conclusions

- ➢ **Ground state energies and spectra of stable p-shell nuclei from Daejeon16 in good agreement with experiment; electromagnetic transitions are reasonable**
- ➢ **Increasing the basis space can significantly improve the accuracy of calculations**
- ➢ **Expanded the application of NCCI from electromagnetic interactions to electroweak interactions, to establish a wider connection between theoretical and experimental work**
- ➢ **The study of electroweak interaction can be treated as a test of Daejeon16 calculations**
- ➢ **Achieving world-leading scale computing on China's supercomputers**

Thank you!

❖ **Point Proton Radii of ground state from Daejeon16**

We get the estimations and uncertainties of point proton radii from the "crossing points" The point proton radii values from Deajeon16 quite close to experimental data