

基于协变手征有效场论的核子-核子相互作用研究

第一届"粤港澳"核物理论坛

肖杨 合作者:耿立升、陆俊旭、王春宣、任修磊

2022年7月3日,珠海

Contents

- Introduction
- Covariant nucleon-nucleon contact Lagrangian
- Covariant Two-pion exchange contributions
- NNLO covariant chiral nuclear force
- Summary & outlook

Contents

- Introduction
- Covariant nucleon-nucleon contact Lagrangian
- Covariant Two-pion exchange contributions
- NNLO covariant chiral nuclear force
- Summary & outlook

Nuclear force from **QCD**

• Non-perturbative

(low energy)-unsolvable

- D.o.f.: quarks & gluons / hadrons
- > Couplings $\alpha_s > 1$

Hadrons

Call for new methods

(QCD based)

- 1. Lattice QCD
- 2. (Chiral) Effective field theory

Why chiral nuclear force (NF) ?

(Compared to phenomenological models)

Connection to QCD - symmetries (chiral & breaking)

 $\succ \mathcal{L}_{QCD} \rightarrow \mathcal{L}_{\chi EFT} \sim \sum_{v} c_{v} \times \mathcal{L}_{\chi EFT}^{(v)}$

Relevant nuclear physics degrees of freedom

> QCD: quarks & gluons → Chiral: hadrons (non-linear realization)

Systematic expansion parameters

 \succ QCD: α_s → Chiral: Q/Λ_{χ} ($\Lambda_{\chi}, m_N \sim 1$ GeV, $Q \sim p, q, m_{\pi}$)

• Error estimation

Chiral NF vs. Phenomenological NF

D. Entem et al. PRC 96 024004 (2017)

	Phenome	enological	Non-relativistic chiral			
	Reid93	CD-Bonn	LO	NLO	N ² LO	N ³ LO
Parameters	50	38	2	9	9	24
χ^2 /datum	1.03	1.02	94	36.7	5.28	1.27

• Chiral NF (model independent) comparable to phenomenological NF in precision

Chiral NF vs. Phenomenological NF

D. Entem et al. PRC 96 024004 (2017)

	Phenome	enological	Non-relativistic chiral			
	Reid93 CD-Bonn		LO	NLO	N ² LO	N ³ LO
Parameters	50	38	2	9	9	24
χ^2 /datum	1.03	1.02	94	36.7	5.28	1.27

- Chiral NF (model independent) comparable to phenomenological NF in precision
- Done ?

Chiral NF vs. Phenomenological NF

D. Entem et al. PRC 96 024004 (2017)

	Phenome	enological	N	Non-relativistic chiral			
	Reid93 CD-Bonn		LO	NLO	N ² LO	N ³ LO	
Parameters	50	38	2	9	9	24	
χ^2 /datum	1.03	1.02	94	36.7	5.28	1.27	

- Chiral NF (model independent) comparable to phenomenological NF in precision
- Done ? no (yet) RG, Ay puzzle, ...

Why covariant chiral NF?

- NR chiral NF cannot be used in covariant nuclear methods •
- Bare NF input for covariant methods: Bonn potential ٠
 - Model independent ?
 - \succ Error estimation ?

	Annual Review of Nuclea Covariant Dens	rr and Particle Science sity Functional
	Theory in Nucl and Astrophysic	lear Physics cs
	PHYSICAL REVIEW C 85, 034613 (2012)	
	Relativistic nucleon optical potentials with isospin d in a Dirac-Brueckner-Hartree-Fock approa	ependence ch
	CHIN. PHYS. LETT. Vol. 33, No. 10 (2016) 102103 Expres	ss Letter
R	elativistic Brueckner–Hartree–Fock Theory for Finite Nuclei *	
Shi-Hang ¹ State Key : ⁴ Depart	 Shen(申时行)^{1,2}, Jin Niu Hu(胡金牛)³, Hao Zhao Liang(梁豪兆)^{2,4}, Jie Meng(孟杰)^{1,4} Peter Ring^{1,7}, Shuang Quan Zhang(张双全)¹ Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing ²RIKEN Nishina Center, Wako 351-0198, Japan ³Department of Physics, Nankai University, Tianjin 300071 tment of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Jap ⁵School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 ⁶Department of Physics, University of Stellenbosch, Stellenbosch, South Africa Physik-Department der Technischen Universität München, D-85748 Garching, Germany 	5,6**, 100871 gen, Germany the framework is a the set the framework error the framework error the framework error dension the subtracted of these the subtracted of these the subtracted set ange parameter ample the total incident energy ch of the OMP I OMP, A good
	(Received 17 September 2016)	energies using
Starting wit equations ar the ground-s state proper non-relativis for ab initio	h a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner-Hartre e solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to ca state properties of finite nuclei. The nucleus ¹⁶ O is investigated as an example. The resulting g tties, such as binding energy and charge radius, are considerably improved as compared w stic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the covariant investigations of heavy nuclei.	ee-Fock alculate ground- rith the he door

.........

Why covariant chiral NF?

- NR chiral NF cannot be used in covariant nuclear methods •
- Bare NF input for covariant methods: Bonn potential ٠
 - Model independent ?
 - > Error estimation ?

	REVIEWS	Annual Review of Nuclear and Particle Science Covariant Density Functiona Theory in Nuclear Physics and Astrophysics	al
	PHYSICAL REVIE Relativistic nucleon optical po in a Dirac-Brueckner	W C 85, 034613 (2012) otentials with isospin dependence r-Hartree-Fock approach	4
B	CHIN. PHYS. LETT. Vol. 33, No. 10 (201	6) 102103 Express Letter	
Shi-Hang ¹ State Key I ⁴ Depart 5	Shen (申时行) ^{1,2} , Jin-Niu Hu (胡金牛) ³ , Hao-Zhao Lian Peter Ring ^{1,7} , Shuang-Quan Zhang(aboratory of Nuclear Physics and Technology, School of P. ² RIKEN Nishina Center, Wako 351-019 ³ Department of Physics, Nankai University, 7 ment of Physics, Graduate School of Science, The Universi School of Physics and Nuclear Energy Engineering, Beihar ⁶ Department of Physics, University of Stellenbosch, Ste Physik-Department der Technischen Universität München,	ny for P inite (vucler $(g(梁豪兆)^{2,4})$, Jie Meng(孟杰) ^{1,5,6**} , 张双全) ¹ the framework bysics, Peking University, Beijing 100871 (B, Japan Tianjin 300071 ity of Tokyo, Tokyo 113-0033, Japan ng University, Beijing 100191 ellenbosch, South Africa D-85748 Garching, Germany	ic labo rs at th es, tele er mor eutron of densi into th y acces nctiona tire nu npellin
Starting with equations are the ground-s state proper non-relativis for ab initio	(Received 17 September 2016 a bare nucleon-nucleon interaction, for the first time the solved for finite nuclei in a Dirac–Woods–Saxon basis. No fi ate properties of finite nuclei. The nucleus ¹⁶ O is investigat ies, such as binding energy and charge radius, are consi- ic Brueckner–Hartree–Fock results and much closer to the covariant investigations of heavy nuclei.	i) OMP. A good energies using full relativistic Brueckner-Hartree-Fock tee parameters are introduced to calculate ted as an example. The resulting ground- derably improved as compared with the e experimental data. This opens the door	

DOI: 10.1088/0256-307X/33/10/102103

12

PACS: 21.60.De, 21.10.Dr

Covariant chiral NF - feasibility

• LO covariant \approx NLO non-relativistic (J=0, 1)

Good, but enough?

Abstract: Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the ${}^{1}S_{0}$ and ${}^{3}P_{0}$ phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta $J \ge 1$, the relativistic results are almost the same as their leading order non-relativistic counterparts.

 Keywords:
 covariant chiral perturbation theory, nucleon-nucleon interaction, relativistic scattering equation

 PACS:
 13.75.Cs, 21.30.-x
 DOI: 10.1088/1674-1137/42/1/014103

Covariant chiral NF - feasibility

• LO covariant \approx NLO non-relativistic (J=0, 1)

Good, but enough?- No !

Abstract: Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the ${}^{1}S_{0}$ and ${}^{3}P_{0}$ phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta $J \ge 1$, the relativistic results are almost the same as their leading order non-relativistic counterparts.

 Keywords:
 covariant chiral perturbation theory, nucleon-nucleon interaction, relativistic scattering equation

 PACS:
 13.75.Cs, 21.30.-x
 DOI: 10.1088/1674-1137/42/1/014103

Covariant vs. non-relativistic NF

Chiral Nuclear Force Precision							
	LO covariant NLO N ² LO covariant (expectation)						
Parameters	2	4(5)	9	9	17	24	
χ^2 /datum	94	←here→	36.7	5.28	~ 1 ?	1.27	

NLO/N²LO covariant chiral NF on the schedule

Higher order Feynman Diagrams

Key inputs

- Two-nucleon contact terms (short range)
 Pion-nucleon vertices
 - Two-pion exchange (medium range)

F....

4N Force

CONTENTS

- Introduction
- Covariant nucleon-nucleon contact Lagrangian
- Covariant Two-pion exchange contributions
- NNLO covariant chiral nuclear force
- Summary & outlook

Covariant Lagrangian

Symmetries

- Lorentz
- Chiral
- Charge (C), Parity (P), Time reversal (T)
 Hermitian conjugation (H.c.)
- Power counting
- **□** Equation of motion (EOM)
 - Remove redundant terms

Covariant Lagrangian - Symmetries

- Lorentz: α, β, γ
- Chiral: Matter field $\psi \to K\psi$
- Hermitian: No additional constrain
- Parity & Charge: Important !
- Time reversal: CPT theorem

 $\checkmark \vec{\partial}^{\alpha} = \vec{\partial}^{\alpha} - \vec{\partial}^{\alpha}$ $\checkmark \partial^{\alpha} = \partial^{\alpha} (\bar{\psi} \Gamma \psi)$

Operators transform properties

Covariant Lagrangian – Power counting

- Expressions: $\frac{1}{(2m)^{N_d}} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} \dots \Gamma_A \psi \right) \partial^{\lambda} \partial^{\mu} \dots \left(\bar{\psi} i \overleftrightarrow{\partial}^{\sigma} i \overleftrightarrow{\partial}^{\tau} \dots \Gamma_B \psi \right)$
- Nucleon filed: $\psi = {p \choose n} \sim O(p^0)$, nucleon mass: $m \sim O(p^0)$,
- Clifford Algebra: $\Gamma \in \{1, \gamma_{\mu}, \gamma_{5}\gamma_{\mu}, \sigma_{\mu\nu} \sim O(p^{0}), \gamma_{5} \sim O(p^{1})\}$
- Nucleon momentum: $\partial(\bar{\psi}\Gamma\psi) \sim O(p^1), (\bar{\psi}\bar{\partial}\psi) \sim O(p^0)$

 N_d : 4 momentum number, $\dot{\partial} = \vec{\partial} - \dot{\partial}$

Two-nucleon contact Feynman diagram

Covariant Lagrangian - EOM

EOM: $\gamma^{\mu}\partial_{\mu}\psi = -im\psi + \mathcal{O}(q)$

D Further application:

$$\mathcal{L}_{\chi EFT} \left(\Theta^{i} = \Gamma'^{\lambda} \partial_{\lambda}^{n_{i}} \right) \approx -im \mathcal{L}_{\chi EFT} \left(\Theta^{i} = \Gamma \partial^{n_{i}-1} \right)$$

D Summary (part):

$$- \gamma_5 \gamma^{\mu} \Leftrightarrow \epsilon_{\mu\nu\alpha\beta} \sigma^{\alpha\beta} \overleftrightarrow{\partial}^{\nu};$$

$$- \sigma_{\mu\nu} \Leftrightarrow \epsilon_{\mu\nu\alpha\beta}\gamma_5\gamma^{\alpha}\overleftrightarrow{\partial}^{\beta};$$

-
$$\epsilon_{\mu\nu\alpha\beta} (\bar{\psi} \overleftrightarrow{\partial}^{\mu} \overleftrightarrow{\partial}^{\nu} \dots \Gamma \psi) = 0;$$

-

Γ	Γ_λ'	$\Gamma_{\lambda}^{\prime\prime}$
1	γ_{λ}	0
γ_{μ}	$g_{\mu\lambda} 1$	$-i\sigma_{\mu\lambda}$
γ_5	0	$\gamma_5\gamma_\lambda$
$\gamma_5\gamma_\mu$	$\frac{1}{2}\epsilon_{\mu\lambda\rho\tau}\sigma^{\rho\tau}$	$g_{\mu\lambda}\gamma_5$
$\sigma_{\mu u}$	$\epsilon_{\mu u\lambda au}\gamma_5\gamma^ au$	$-i\left(g_{\mu\lambda}\gamma_{\nu}-g_{\nu\lambda}\gamma_{\mu}\right)$
$\epsilon_{\mu\nu\rho\tau}\gamma^{\tau}$	$\epsilon_{\mu\nu ho\lambda}1$	$g_{\mu\lambda}\gamma_5\sigma_{\nu\rho} + g_{\rho\lambda}\gamma_5\sigma_{\mu\nu} + g_{\nu\lambda}\gamma_5\sigma_{\rho}$
$\epsilon_{\mu\nu\rho\tau}\gamma_5\gamma^\tau$	$g_{\mu\lambda}\sigma_{\nu\rho} + g_{\rho\lambda}\sigma_{\mu\nu} + g_{\nu\lambda}\sigma_{\rho\mu}$	$\epsilon_{\mu u ho\lambda}\gamma_5$
$\epsilon_{\mu u holpha}\sigma^{lpha}_{ au}$	$\gamma_5\gamma_\rho\left(g_{\lambda\nu}g_{\mu\tau}-g_{\lambda\mu}g_{\nu\tau}\right)+$	$ig_{\lambda\tau}\epsilon_{\mu\nu\rho\alpha}\gamma^{\alpha} - i\epsilon_{\mu\nu\rho\lambda}\gamma_{\tau}$
	$\gamma_5\gamma_\nu\left(g_{\lambda\mu}g_{\rho\tau}-g_{\lambda\rho}g_{\mu\tau}\right)+$	
	$\gamma_5 \gamma_\mu \left(g_{\lambda\rho} g_{\nu\tau} - g_{\lambda\nu} g_{\rho\tau} \right)$	
$\frac{i}{2}\epsilon_{\mu\nu\rho\tau}\sigma^{\rho\tau} = \gamma_5\sigma_{\mu\nu}$	$\frac{1}{i} \left(g_{\mu\lambda} \gamma_5 \gamma_\nu - g_{\nu\lambda} \gamma_5 \gamma_\mu \right)$	$\epsilon_{\mu u\lambda ho}\gamma^{ ho}$

N. Fettes et al. Annals Phys. 283:273 (2000)

N³LO covariant Lagrangian

 $\frac{1}{16m^4} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\mu} \psi \right) \partial^2 \partial^{\nu} \left(\bar{\psi} \sigma_{\mu\nu} \psi \right)$ $(\bar{\psi}\psi)(\bar{\psi}\psi)$ \widetilde{O}_{21} O_1 \widetilde{O}_2 \widetilde{O}_{22} $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\alpha} \psi \right) \partial^2 \partial_\alpha \partial^\nu \left(\bar{\psi} \sigma_{\mu\nu} \psi \right)$ $(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi)$ $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\nu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \partial^{\beta} \partial_{\nu} \left(\bar{\psi} \sigma_{\alpha\beta} i \overleftrightarrow{\partial}_{\mu} \psi \right)$ \widetilde{O}_3 \widetilde{O}_{23} $(\bar{\psi}\gamma_5\gamma^\mu\psi)(\bar{\psi}\gamma_5\gamma_\mu\psi)$ \widetilde{O}_4 \widetilde{O}_5 \widetilde{O}_{24} $(\bar{\psi}\sigma^{\mu\nu}\psi)(\bar{\psi}\sigma_{\mu\nu}\psi)$ $rac{1}{16m^4} \left(ar{\psi} \psi
ight) \partial^4 \left(ar{\psi} \psi
ight)$ \widetilde{O}_{25} $\frac{1}{16m^4} \left(\bar{\psi} \gamma^{\mu} \psi \right) \partial^4 \left(\bar{\psi} \gamma_{\mu} \psi \right)$ $(\bar{\psi}\gamma_5\psi)(\bar{\psi}\gamma_5\psi)$ \widetilde{O}_6 \widetilde{O}_{26} $\frac{1}{4m^2} \left(\bar{\psi} \gamma_5 \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} \gamma_5 \gamma_{\alpha} i \overleftrightarrow{\partial}_{\mu} \psi \right)$ $\frac{1}{16m^4} \left(\bar{\psi} \gamma_5 \gamma^{\mu} \psi \right) \partial^4 \left(\bar{\psi} \gamma_5 \gamma_{\mu} \psi \right)$ \widetilde{O}_7 $\frac{1}{4m^2} \left(\bar{\psi} \sigma^{\mu\nu} i\overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} \sigma_{\mu\alpha} i\overleftrightarrow{\partial}_{\nu} \psi \right)$ \widetilde{O}_{27} $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\nu} \psi \right) \partial^4 \left(\bar{\psi} \sigma_{\mu\nu} \psi \right)$ \widetilde{O}_8 $\frac{1}{4m^2} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\mu} \psi \right) \partial^{\nu} \left(\bar{\psi} \sigma_{\mu\nu} \psi \right)$ \widetilde{O}_{28} $\frac{1}{4m^2} \left(\bar{\psi} \gamma_5 i \overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} \gamma_5 i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_5$ \widetilde{O}_9 \widetilde{O}_{29} $\frac{1}{16m^4} \left(\bar{\psi} \gamma_5 \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} \psi \right) \left(\bar{\psi} \gamma_5 \gamma_{\alpha} i \overleftrightarrow{\partial}_{\mu} i \overleftrightarrow{\partial}_{\beta} \psi \right) - \widetilde{O}_6$ $\frac{1}{4m^2} \left(\bar{\psi} \sigma^{\mu \alpha} \psi \right) \partial_{\alpha} \partial^{\nu} \left(\bar{\psi} \sigma_{\mu \nu} \psi \right)$ $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\nu} i\overleftrightarrow{\partial}^{\alpha} i\overleftrightarrow{\partial}^{\beta} \psi \right) \left(\bar{\psi} \sigma_{\mu\alpha} i\overleftrightarrow{\partial}_{\nu} i\overleftrightarrow{\partial}_{\beta} \psi \right) - \widetilde{O}_7$ \widetilde{O}_{10} \widetilde{O}_{30} $\frac{1}{4m^2} \left(\bar{\psi} \psi \right) \partial^2 \left(\bar{\psi} \psi \right)$ \widetilde{O}_{11} \widetilde{O}_{31} $\frac{1}{16m^4} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\mu} i \overleftrightarrow{\partial}^{\beta} \psi \right) \partial^{\alpha} \left(\bar{\psi} \sigma_{\mu\alpha} i \overleftrightarrow{\partial}_{\beta} \psi \right) - \widetilde{O}_8$ $\frac{1}{4m^2} \left(\bar{\psi} \gamma^{\mu} \psi \right) \partial^2 \left(\bar{\psi} \gamma_{\mu} \psi \right)$ \widetilde{O}_{12} $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\alpha} i \overleftrightarrow{\partial}^{\beta} \psi \right) \partial_{\alpha} \partial^{\nu} \left(\bar{\psi} \sigma_{\mu\nu} i \overleftrightarrow{\partial}_{\beta} \psi \right) - \widetilde{O}_9$ \widetilde{O}_{32} $\frac{1}{4m^2} \left(\bar{\psi} \gamma_5 \gamma^{\mu} \psi \right) \partial^2 \left(\bar{\psi} \gamma_5 \gamma_{\mu} \psi \right)$ \widetilde{O}_{13} \widetilde{O}_{33} $\frac{1}{16m^4} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \partial^2 \left(\bar{\psi} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_{10}$ $\frac{1}{4m^2} \left(\bar{\psi} \sigma^{\mu\nu} \psi \right) \partial^2 \left(\bar{\psi} \sigma_{\mu\nu} \psi \right)$ \widetilde{O}_{14} $\frac{1}{4m^2} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_1$ \widetilde{O}_{34} $\frac{1}{16m^4} \left(\bar{\psi} \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \partial^2 \left(\bar{\psi} \gamma_{\mu} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_{11}$ \widetilde{O}_{15} $\frac{1}{4m^2} \left(\bar{\psi} \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} \gamma_{\mu} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_2$ $\frac{1}{16m^4} \left(\bar{\psi} \gamma_5 \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \partial^2 \left(\bar{\psi} \gamma_5 \gamma_{\mu} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_{12}$ \widetilde{O}_{35} $\frac{1}{4m^2} \left(\bar{\psi} \gamma_5 \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} \gamma_5 \gamma_{\mu} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_3 \quad \widetilde{O}_{36}$ \widetilde{O}_{16} $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\nu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \partial^2 \left(\bar{\psi} \sigma_{\mu\nu} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_{13}$ $\frac{1}{16m^4} \left(\bar{\psi} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} \psi \right) \left(\bar{\psi} i \overleftrightarrow{\partial}_{\alpha} i \overleftrightarrow{\partial}_{\beta} \psi \right) - 2 \widetilde{O}_{14} - \widetilde{O}_1$ $\frac{1}{4m^2} \left(\bar{\psi} \sigma^{\mu\nu} i \overleftrightarrow{\partial}^{\alpha} \psi \right) \left(\bar{\psi} \sigma_{\mu\nu} i \overleftrightarrow{\partial}_{\alpha} \psi \right) - \widetilde{O}_4 \quad \widetilde{O}_{37}$ \widetilde{O}_{17} $\frac{1}{16m^4} \left(\bar{\psi} \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} \psi \right) \left(\bar{\psi} \gamma_{\mu} i \overleftrightarrow{\partial}_{\alpha} i \overleftrightarrow{\partial}_{\beta} \psi \right) - 2 \widetilde{O}_{15} - \widetilde{O}_2$ $rac{1}{4m^2} \left(ar{\psi} \gamma_5 \psi \right) \partial^2 \left(ar{\psi} \gamma_5 \psi \right)$ \widetilde{O}_{38} \widetilde{O}_{18} $\frac{1}{16m^4} \left(\bar{\psi} \gamma_5 \gamma^{\mu} i\overleftrightarrow{\partial}^{\nu} \psi \right) \partial^2 \left(\bar{\psi} \gamma_5 \gamma_{\nu} i\overleftrightarrow{\partial}_{\mu} \psi \right)$ $\frac{1}{16m^4} \left(\bar{\psi} \gamma_5 \gamma^{\mu} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} \psi \right) \left(\bar{\psi} \gamma_5 \gamma_{\mu} i \overleftrightarrow{\partial}_{\alpha} i \overleftrightarrow{\partial}_{\beta} \psi \right) - 2 \widetilde{O}_{16} - \widetilde{O}_3$ \widetilde{O}_{19} \widetilde{O}_{39} $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\nu} i\overleftrightarrow{\partial}^{\alpha} \psi \right) \partial^2 \left(\bar{\psi} \sigma_{\mu\alpha} i\overleftrightarrow{\partial}_{\nu} \psi \right)$ $\frac{1}{16m^4} \left(\bar{\psi} \sigma^{\mu\nu} i \overleftrightarrow{\partial}^{\alpha} i \overleftrightarrow{\partial}^{\beta} \psi \right) \left(\bar{\psi} \sigma_{\mu\nu} i \overleftrightarrow{\partial}_{\alpha} i \overleftrightarrow{\partial}_{\beta} \psi \right) - 2 \widetilde{O}_{17} - \widetilde{O}_4$ $|\widetilde{O}_{40}|$ \widetilde{O}_{20}

Yang Xiao et al. PRC 99 024004 (2019)

O_S	$(N^\dagger N)(N^\dagger N)$	011	$(N^{\dagger}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N)(N^{\dagger}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N)$
O_T	$(N^{\dagger}\boldsymbol{\sigma}N)\cdot(N^{\dagger}\boldsymbol{\sigma}N)$	012	$i(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}\times\overleftarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\overrightarrow{\boldsymbol{\nabla}}^{2}N) + \mathrm{h.c.}$
O_1	$(N^{\dagger}N)(N^{\dagger}\overrightarrow{\nabla}^2N)$ + h.c.	013	$i (N^{\dagger} \boldsymbol{\sigma} \cdot \overrightarrow{\boldsymbol{\nabla}} \times \overleftarrow{\boldsymbol{\nabla}} N) (N^{\dagger} \overrightarrow{\boldsymbol{\nabla}} \cdot \overleftarrow{\boldsymbol{\nabla}} N)$
O_2	$(N^{\dagger}N)(N^{\dagger}\overrightarrow{{f abla}}\cdot\overleftarrow{{f abla}}N)$	O_{14}	$(N^{\dagger}\sigma^{j}N)(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}^{4}N) + \text{h.c.}$
<i>O</i> ₃	$i(N^{\dagger}\boldsymbol{\sigma}N)\cdot(N^{\dagger}\overrightarrow{\boldsymbol{\nabla}}\times\overleftarrow{\boldsymbol{\nabla}}N)$	015	$(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N)(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}^{2}N) + \text{h.c.}$
O_4	$(N^{\dagger}\sigma^{j}N)(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}^{2}N) + \text{h.c.}$	016	$(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}^{2}N)(N^{\dagger}\sigma^{j}\overleftarrow{\nabla}^{2}N)$
O_5	$(N^{\dagger}\sigma^{j}N)(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N)$	017	$(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N)(N^{\dagger}\sigma^{j}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N)$
O_6	$ (N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)+\text{h.c.} $	$ O_{18} $	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}\overrightarrow{\boldsymbol{\nabla}}^{2}N) + \mathrm{h.c.}$
O_7	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{ abla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overleftarrow{\boldsymbol{ abla}}N)$	019	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overleftarrow{\boldsymbol{\nabla}}\overrightarrow{\boldsymbol{\nabla}}^{2}N) + \text{h.c.}$
O_8	$(N^{\dagger}N)(N^{\dagger}\overrightarrow{\nabla}^{4}N) + \text{h.c.}$	O_{20}	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}\overrightarrow{\boldsymbol{\nabla}}\cdot\overleftarrow{\boldsymbol{\nabla}}N) + \text{h.c.}$
O_9	$(N^{\dagger}\overrightarrow{\nabla}^2 N)(N^{\dagger}\overrightarrow{\nabla}\cdot\overleftarrow{\nabla}N) + \text{h.c.}$	021	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}\overleftarrow{\boldsymbol{\nabla}}^{2}N) + \mathrm{h.c.}$
<i>O</i> ₁₀	$(N^{\dagger}\overrightarrow{\nabla}^2 N)(N^{\dagger}\overleftarrow{\nabla}^2 N)$	022	$(N^{\dagger}\boldsymbol{\sigma}\cdot\overrightarrow{\boldsymbol{\nabla}}N)(N^{\dagger}\boldsymbol{\sigma}\cdot\overleftarrow{\boldsymbol{\nabla}}\overrightarrow{\boldsymbol{\nabla}}\cdot\overleftarrow{\boldsymbol{\nabla}}N)$

Covariant: 40 vs. Non-relativistic: 24

CONTENTS

- Introduction
- Covariant nucleon-nucleon contact Lagrangian
- Covariant Two-pion exchange contributions
- NNLO covariant chiral nuclear force
- Summary & outlook

Two-pion exchange up to N²LO

Covariant chiral Lagrangian:

$$\mathcal{L}_{\pi N}^{(1)} = \overline{N} \left(\gamma^{\mu} D_{\mu} - m_N + \frac{g_A}{2} \gamma^{\nu} u_{\nu} \gamma_5 \right) N,$$

$$\mathcal{L}_{\pi N}^{(2)} = c_1 \langle \chi_+ \rangle \overline{N} N - \frac{c_2}{4m_N^2} \langle u^{\mu} u^{\nu} \rangle (\overline{N} D_{\mu} D_{\nu} N + \text{H.c.}) + \frac{c_3}{2} \langle u^2 \rangle \overline{N} N - \frac{c_4}{4} \overline{N} \gamma^{\mu} \gamma^{\nu} [u_{\mu}, u_{\nu}] N.$$

$$\square \text{ Feynman diagrams:}$$

Chiral potentials

$$\bar{u}_1 \bar{u}_2 u_1 u_2 \coloneqq \bar{u}_1 u_1 \bar{u}_2 u_2 \qquad u(\boldsymbol{p}, s) = N \left(\frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E + m_N} \right) \chi_s, \qquad N = \sqrt{\frac{E + m_N}{m_N}}$$

7 matrix & phase shifts

□ On-shell *T* matrix: in leading order perturbation theory (for high waves) $T_{NN} = V_{NN}$

Phase shifts:

$$\delta_{LSJ} = -\frac{m_N^2 |\mathbf{p}|}{16\pi^2 E} \operatorname{Re} \langle LSJ | T_{NN} | LSJ \rangle,$$

$$\epsilon_J = \frac{m_N^2 |\mathbf{p}|}{16\pi^2 E} \operatorname{Re} \langle J - 1, 1, J | T_{NN} | J + 1, 1, J \rangle.$$

 \Box

Study relativistic correction (parameters free)

(Dirac spinors vs. Pauli spinors)

D wave phase shifts

F & G wave phase shifts

✓ F wave: relativistic corrections sizeable (${}^{3}F_{2}$, ${}^{1}F_{3}$ & ${}^{3}F_{3}$)

Higher partial waves: relativistic corrections insignificant

CONTENTS

- Introduction
- Covariant nucleon-nucleon contact Lagrangian
- Covariant Two-pion exchange contributions
- NNLO covariant chiral nuclear force
- Summary & outlook

Higher order Feynman Diagrams

Key inputs

- Two-nucleon contact terms (short range)
 Pion-nucleon vertices
 - Two-pion exchange (medium range)

4N Force

Neutron-Proton Phase Shifts

✓ Characteristics

> High precision

• **NNLO** covariant \approx **N3LO** Heavy Baryon

Good convergence

- NLO \approx NNLO (<200 MeV)
- Convincing theoretical uncertainties
 - Bayesian method

Jun-Xu Lu et al., PRL128 142002, (2022)

CONTENTS

- Introduction
- Covariant nucleon-nucleon contact Lagrangian
- Covariant Two-pion exchange contributions
- NNLO covariant chiral nuclear force
- Summary & outlook

Summary

1. Construct $O(q^4)$ covariant NN contact chiral Lagrangian

≻40 terms & consistent with non-relativistic after reduction

2. Covariant two-pion exchange

>Relativistic corrections improve data description especially for F wave

3. NNLO covariant chiral nuclear force

>High precision, good convergence & convincing error estimation

Outlook

- 1. Lagrangian with isospin breaking terms for *nn* & *pp* scattering
- 2. TPE with Delta & Roper
- 3. (Covariant) RG invariance
- 4. Input for nuclear structure & reactions methods
- 5. Covariant microscopic optimal potentials

EFT – effective theory for underlying theory

• Main idea

Low-energy physics independent of details of high-energy physics

• How to construct EFT

Identify soft / hard scales & d.o.f.s

Q (soft/low energy scale), (hard/high energy scale)

Construct the Lagrangian incorporating relevant symmetries

Lorentz, chiral, ...

Design power counting rule

EFTs for nuclear physics (few nucleons)

Self consistent check

- Non-relativistic reduction: Expand nucleon field in 1/m
 - Covariant field

$$\psi(x) = \int \frac{d\mathbf{p}}{(2\pi)^3} \frac{m}{E_p} \widetilde{b}_s(\mathbf{p}) \, u^{(s)}(\mathbf{p}) \, \mathrm{e}^{-ip \cdot x},$$

• Non-relativistic field:

$$N(x) = \int \frac{d\mathbf{p}}{(2\pi)^3} b_s(\mathbf{p}) \,\chi_s \,\mathrm{e}^{-i\mathbf{p}\cdot x} \,,$$

• Expansion:

$$\psi(x) = \left[\begin{pmatrix} 1\\0 \end{pmatrix} - \frac{i}{2m} \begin{pmatrix} 0\\\sigma \cdot \nabla \end{pmatrix} + \frac{1}{8m^2} \begin{pmatrix} \nabla^2\\0 \end{pmatrix} - \frac{3i}{16m^3} \begin{pmatrix} 0\\\sigma \cdot \nabla \nabla^2 \end{pmatrix} + \frac{11}{128m^4} \begin{pmatrix} \nabla^4\\0 \end{pmatrix} \right] N(x) + \mathcal{O}(Q^5)$$

Covariant = non-relativistic after reduction!

Non-relativistic two-pion exchange

Dash: one-pion exchange (OPE), solid: OPE + two-pion exchange (TPE), dotted: data

- > = G partial waves good
- > TPE important (medium range NF)

Complexities of covariant potentials

covariant vs. non-relativistic Field $u(\boldsymbol{p},s) = \sqrt{\frac{E+m_N}{m_N}} \left(\frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E+m_N}\right) \chi_s \text{ vs. } N(s) = \chi_s$ $\frac{\text{Propagators}}{\gamma \cdot p - m_N + i \,\varepsilon} \text{ vs. } \frac{1}{S \cdot p + i \,\varepsilon}$ **Operators** $\gamma^{\mu} = (\gamma^0, \vec{\gamma})$ vs. $S^{\mu} = (0, \frac{\sigma}{2})$ (in rest frame) $\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \vec{\gamma} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \\ -\boldsymbol{\sigma} & 0 \end{pmatrix}$

Bilinear: (one simplest example)

$$\bar{u}_{1}\bar{u}_{2}u_{1}u_{2} = N_{1}^{\dagger}N_{1}N_{2}^{\dagger}N_{2}\left(1 + \frac{E+E'}{4m_{N}} + \frac{EE'}{4m_{N}^{2}}\right)$$
$$-\frac{1}{4m_{N}^{2}}\left(N_{1}^{\dagger}\boldsymbol{\sigma}\cdot\boldsymbol{p}'\boldsymbol{\sigma}\cdot\boldsymbol{p}N_{1}N_{2}^{\dagger}N_{2} + N_{1}^{\dagger}N_{1}N_{2}^{\dagger}\boldsymbol{\sigma}\cdot\boldsymbol{p}'\boldsymbol{\sigma}\cdot\boldsymbol{p}N_{2}\right)$$
$$+\frac{N_{1}^{\dagger}\boldsymbol{\sigma}\cdot\boldsymbol{p}'\boldsymbol{\sigma}\cdot\boldsymbol{p}N_{1}N_{2}^{\dagger}\boldsymbol{\sigma}\cdot\boldsymbol{p}'\boldsymbol{\sigma}\cdot\boldsymbol{p}N_{2}}{4m_{N}^{2}EE'} \quad 6 \text{ terms vs. 1 term}$$

Kinematics: (TPE) $f(p, p', m_n, m_\pi)$ vs. $g(q, m_\pi)$ Potentials = bilinear × kinematics

Covariant potentials much complex than non-relativistic potentials

Numerical details

	g _A	f_{π} (GeV)	$c_1(\text{GeV}^{-1})$	$c_2(\text{GeV}^{-1})$	$c_3(\text{GeV}^{-1})$	$c_4({ m GeV}^{-1})$
Covariant	1.29	0.0924	-1.39	4.01	-6.61	3.92
Non- Relativistic	1.29	0.0924	-0.9	~	-5.3	3.6

• Covariant LECs from Y. H. Chen, D. L. Yao, and H. Q. Zheng, PRD 87, 054019 (2013).

• NR LECs from V. Bernard, N. Kaiser, and U. G. Meißner, NPA 615, 483 (1997).

S wave TPE phase shifts (perturbative)

----- LO

P wave TPE phase shifts

Observables

Observables

Cut off

	-	-				
	Regulate Short (contact)	or functions Long (pion exchanges)	Regulator exponent(s)	Chiral order/ cutoff range	$\frac{\pi N}{2\pi}$ regularization	Fitting protocol
Local						
GT+ [22, 23]	$\alpha e^{-\widetilde{r}^n}$	$1 - e^{-\tilde{r}^n}$	n = 4	Up to N ² LO $R_0 = 0.9 - 1.2 \text{ fm}$	Fixed values from Ref. [26] SFR	Nijmegen PWA [27]
Semilocal						
EKM [9, 24]	$e^{-\widetilde{p}^{n_1}}e^{-\widetilde{p}'^{n_1}}$	$\left(1-e^{-\widetilde{r}^2}\right)^{n_2}$	$n_1 = 2$ $n_2 = 6$	Up to N ⁴ LO $R_0 = 0.8 - 1.2$ fm $\Lambda \approx 493 - 329$ MeV	Fixed values [24] DR	Nijmegen PWA [27]
Nonlocal						
sim [25]	$e^{-\tilde{p}^{2n}}e^{-\tilde{p}'^{2n}}$	$e^{-\tilde{p}^{2n}}e^{-\tilde{p}'^{2n}}$	n = 3	Up to N ² LO $\Lambda = 450 - 600 \text{ MeV}$	Fitting parameter in simultaneous fit SFR	Fits to NN , πN , and few-body systems ^{2,3} H, ³ He
EMN [10]	$e^{-\tilde{p}^{2n_1}}e^{-\tilde{p}'^{2n_1}}$	$e^{-\tilde{p}^{2n_2}}e^{-\tilde{p}'^{2n_2}}$	$n_1 > \nu/2$ $n_2 = 2$ (4)	Up to N ⁴ LO $\Lambda = 450 - 550$ MeV	Fixed values from Ref. [28] SFR	NN data from 1955-2016 [29]

J. Hoppe et al., PRC 96 5, 054002 (2017)

 $G_0(W)V |\Psi_{\nu}(W)\rangle = \eta_{\nu}(W) |\Psi_{\nu}(W)\rangle .$

Weinberg eigenvalue

48