

Ab initio no-core Gamow shell model calculations of Multineutron systems

Jianguo Li (李健国)

Institute of Modern Physics, Chinese Academic of Science

In collaboration with

Furong Xu (许甫荣 教授), Nicolas Michel, Baishan Hu (胡柏山), and Wei Zuo (左维 研究员)

Dripline nuclei

Exotic properties in dripline nuclei

- ✓ Halo structure ^{6,8}He,¹¹Li,¹¹Be,⁸B,¹⁷Ne,²⁹F
- ✓ Particle emission p,n,2p,2n,4n,2n+2n,...
- ✓ Thomas Erhman-shift

 1p
 2p
 3p
 4p
 stable

 Y. Jin et al., Phys. Rev. Lett. 127, 262502 (2021).

drip line

¹⁷Na ¹⁸Na ¹⁹Na

¹⁵Ne ¹⁶Ne

¹⁸Mg -

110 12O

10N 11N

⁹B

⁸C

7B

⁶Be

2

⁴Li ⁵Li

8

2

Resonance and continuum couplings are important and need to be exactly treated!

 \checkmark

. . .

Jianguo Li jianguo_li@impcas.ac.cn

Ν

Resonance state

A resonance state, which represents a decaying process, is time dependent.

Berggren complex-*k* space transfers a time-dependent problem to a time-independent problem !

 $\frac{\mathrm{d}^2 u(k,r)}{\mathrm{d}r^2} = \left(\frac{\ell(\ell+1)}{r^2} + \frac{2m}{\hbar^2}V(r) - k^2\right)u(k,r)$ The radial wave function $e = \frac{\hbar^2 k^2}{2m} = \mathbf{e}_n$ Im(k) pound states Re(k) antibound states $\boldsymbol{L}^{\!+}$ contour decaying states $|u_n\rangle\langle u_n| + \int_{L^+} |u(k)\rangle\langle u(k)|dk = 1$ \sum $n \in (b,d)$

J. G. Li, et al. Phys. Rev. C 103, 034305 (2021)

Ab initio NCGSM calculations of multineutron systems

Jianguo Li jianguo_li@impcas.ac.cn

Page 3/21

T. Berggren, Nucl. Phys. A109 (1968) 265

Many-Body calculations in HO or Berggren basis

NCSM : also see Xingbo Zhao and Peng Ying's Presentations

Ab initio NCGSM calculations of multineutron systems

Jianguo Li jianguo_li@impcas.ac.cn

J. G. Li, et al., Phys. Rev. C 104, 024319 (2021)

Resonance and continuum coupling in dripline nuclei :examples

 $^{18}Mg: 4p-decay to {}^{14}O$

Theoretical calculations are provided by J. G. Li and N. Michel

Y. Jin et al., Phys. Rev. Lett. 127, 262502 (2021).

⁶He: Two-neutron Halo

J. G. Li, et al., in preparation

History of Multineutron system

- More than 50 years of multi-neutron searches, especially the tetraneutron. See <u>arXiv:1608.00169[nucl-th]</u> (2016) Eur. Phys. J. A 57,105(2021),
- > Earlier experiments gave negative results, no information about the multi-neutron systems.
- ➢ In 2002, Marqués *et al* reported the possible existence of a **bound** tetraneutron observed in a breakup reaction of the ¹⁴Be→¹⁰Be+4n channel.
 Marqués *et al.*, PRC 65, 044006 (2002)
- In 2016, Kisamori *et al* observed of few events of tetraneutron in the doubly charge-exchange reaction ⁴He(⁸He,⁸Be). Interpreted the tetraneutron as a candidate **resonance** with **Er** = **0.83** ± **0.65**(**stat**) ± **1.25**(**syst**) **MeV** and width Γ ≤ **2.6 MeV**. Kisamori *et al.*, PRL 116, 044006 (2016)

	reaction	initial state	final state	σ	results	
	4 He (8 He, $\alpha \alpha$) 4 n \square Shimoura, NP1512-SHARAQ10	(%%)⇒ 88	88 (1868)⇒	nb	${\sf N}_{\sf evt}\sim$ 10 s ${}^4{\sf n}$: E, Γ	-
Future tetraneutron experiments	⁸ He (p,p α) ⁴ n \square Paschalis, NP1406-SAMURAI19	(????)⇒ ●	≑ ∰ 88 ●⇒	μ b	${\sf N}_{\sf evt}\sim$ 1000 s ${}^4{\sf n}$: E, Γ	Nature 20
	⁸ He (p,2p) { ³ H+ ⁴ n} ☐ FMM/Yang, NP1512-SAMURAI34	(?????)⇒ ●	<u>●● (🍪 😫)</u> ⇒	mb	N _{evt} \sim 10,000 s 4 n & 7 H : E, Γ, Ω	

Ab initio NCGSM calculations of multineutron systems

History of theoretical researches for the multi-neutron systems

Year	Author	Journal	Conclusion
2003	Bertulani et al	J. Phys. G 29, 2431	gave no bound 4n combined dineutron-dineutron molecule and a toy NN potential
2003	Steven C. Pieper	PRL. 90, 252501	employed the GFMC calculated the tetraneutron, showed the modern nuclear force can not tolerate a bound tetraneutron and suggested the a tetraneutron resonance near 2MeV
2005 → 2016 experiment	Lazauskas and Carbonell	PRC 72, 034003	used Complex scaling based on Reid 93 NN potential: no low-lying 4n resonances : no low-lying tetraneutron resonance.
2016	E.Hiyama <i>et al</i>	PRC 93 , 044004	employed Complex scaling using AV8'+(toy)NNN, low 4 <i>n</i> resonance possible only by strongly strongly modify the nuclear force
2016	A.M.Shirokov et al	PRL 117 ,182502	performed the NCSM with JISP16 interaction conformed a resonant state in tetraneutron around 0.8 MeV, width 1.4 MeV
2017	S. Gandofi <i>et al</i>	PRL 118 , 232501(2017)	presented the QMC calculations of multi-neutron systems, suggested the trineutron and tetraneutron were both resonance

History of theoretical researches for the multi-neutron systems

Year	Author	Journal	Conclusion
2017	K. Fossez <i>et al</i> .	PRL 119 , 032501	performed NCGSM gave energy of tetraneutron may be compatible with experimental value, but the width must be too large
2018	A.Deltuva	PRC 97 , 034001 (2018), PLB 782 , 238 (2018)	employed Faddeev method gave the absence of an observable trineutron and tetraneutron resonance based on modern two-body force
2018	A.M.Shirokov et al.	AIP Conf. proc 020038	Performed NCSM for tetraneutron with different two- body force, similar results are obtained
2019	A.M.Shirokov et al.	Presentation in Nanjing@China 2019	updated their calculations and gave two resonance states in tetraneutron
2019	J. G. Li <i>et al</i> .	PRC 100 054313	Performed NCGSM for trineutron and tetraneutron, predicting that E (³ n) = 1.29 MeV Γ (³ n) = 0.91 MeV E(⁴ n) = 2.64 MeV Γ (⁴ n) = 2.38 MeV
2020 2021	Michael D. Higgins et al.	PRL 125,052501 PRC 103 024004	Using adiabatic hyperspherical framework, Predicting that that no resonance and no bound state exists for the tetraneutron system

Ab initio NCGSM calculations of multineutron systems

NCSM for tetraneutron

E(tetraneutron) = 0.8 MeV Γ (tetraneutron) = 1.4 MeV

A. M. Shirokov, et al, PRL 117, 182502 (2016)

2019' workshop, they predict two resonance states of tetraneutron:

1st: E(4n) ~ 0.3 MeV Γ (4n) ~ 815 keV 2st: E(4n) ~ 0.8 MeV Γ (4n) ~ 1.3 MeV

A. M. Shirokov Presentation in Nanjing@China 2019

Jianguo Li jianguo_li@impcas.ac.cn

Ab initio NCGSM calculations of multineutron systems

QMC calculations of multineutron systems

Only energy, no width!

Ab initio NCGSM calculations of multineutron systems

NCGSM calculations of multineutron systems

K. Fossez, J. Rotureau, N. Michel, and M. Ploszajczak, PRL 119, 032501 (2017)

Ab initio NCGSM calculations of multineutron systems

NCGSM for multi-neutron systems

Ab initio NCGSM calculations of multineutron systems

NCGSM for multi-neutron systems

$E(^{3}n) = 1.29 \text{ MeV}$ $\Gamma(^{3}n) = 0.91 \text{ MeV}$ The energy of trineutron is lower than tetraneutron. $E(^{4}n) = 2.64 \text{ MeV}$ $\Gamma(^{4}n) = 2.38 \text{ MeV}$ QMC extrapolations are agree with our calculations 4n NCGSM-3p3h (small) Tetraneutron 4n NCGSM-3p3h (large) 4n NCGSM-4p4h (small) Trineutron 4n NCGSM-4p4h (n.o) (large) 3n NCGSM (large) Energy (MeV) Energy (MeV) The width of trineutron is smaller than tetraneutron. NCSM2018 NCSM2016 This work GFMC EXPt Vaux (MeV)

U Trineutron Would be More Possible to be Observed than Tetraneutron

J. G. Li, N. Michel, B. S. Hu, W. Zuo, and F. R. Xu*, Phys. Rev. C 100, 054313 (2019)

Ab initio NCGSM calculations of multineutron systems

Page 13/21

The History of Tetraneutron

- ✓ 2016 Expt : Kisamori et al., PRL 116, 044006 (2016)
- ✓ 2016 NCSM: A. M. Shirokov, et al, PRL 117,182502 (2016)
- ✓ 2017 QMC : S. Gandofi, et al., PRL 118, 232501(2017)
- ✓ 2018 NCSM : A. M. Shirokov, et al AIP Conf. proc 020038 (2018)
- ✓ 2019 NCSM : A. M. Shirokov Presentation in Nanjing@China 2019
- ✓ 2019 NCGSM : J. G. Li, N. Michel, B. S. Hu, W. Zuo, and F. R. Xu*, Phys. Rev. C 100, 054313 (2019)

Observation of a correlated free four-neutron system

Article

Observation of a correlated free four-neutron system

M. Duer¹⁵³, T. Aumann^{12.3}, R. Gernhäuser⁴, V. Panin^{2.5}, S. Paschalis¹⁶, D. M. Rossi¹,
N. L. Achouri⁷, D. Ahn⁵¹⁶, H. Baba⁵, C. A. Bertulani⁸, M. Böhmer⁴, K. Bortzky², C. Caesar^{12.5},
N. Chiga⁵, A. Corsi⁹, D. Cortina-Gil¹⁰, C. A. Douma¹¹, F. Dufter⁴, Z. Eleke³², J. Feng¹³, B. Fernánd
ez-Domínguez¹⁰, U. Forsberg⁶, N. Fukuda⁵, I. Gasparic^{15,14}, Z. Ge⁵, J. M. Gheller⁹, J. Gibelin⁷,
A. Gillibert⁹, K. I. Hahn^{15,16}, Z. Halász¹², M. N. Harakeh¹¹, A. Hirayama¹⁷, M. Holl¹, N. Inabe⁵,
T. Isobe⁵, J. Kahlbow¹, N. Kalantar-Nayestanaki¹¹, D. Kim¹⁶, S. Kim¹¹⁶, T. Kobayashi¹⁸, Y. Kondo¹⁷,
D. Körper², P. Koseoglou¹, Y. Kubota⁵, I. Kuti¹², P. J. Li¹⁹, C. Lehr¹, S. Lindberg²⁰, Y. Liu¹³,
F. M. Marqués⁷, S. Masuoka²¹, M. Matsumoto¹⁷, J. Mayer²², K. Miki¹¹⁸, B. Monteagudo⁷,
T. Nakamura⁷, T. Nilsson²⁰, A. Obertell¹¹⁶, N. A. Orr⁷, H. Otsu⁵, S. Y. Park^{15,16}, M. Parlog⁷,
P. M. Potlog²³, S. Reichert⁴, A. Revel^{12,24}, A. T. Saito¹⁷, M. Sasano⁵, H. Scheit¹, F. Schindler¹,
S. Shimoura²¹, H. Simon², L. Stuhl^{16,21}, H. Suzukl⁵, D. Symochko¹, H. Takeda⁵, J. Tanaka¹⁵,
Y. Togano¹⁷, T. Tomai¹⁷, H. T. Törnqvist¹², J. Tscheuschner¹, T. Uesaka⁵, V. Wagner⁷, H. Yamada¹⁷,
B. Yang¹³, L. Yang²¹, Z. H. Yang⁵, M. Yasuda¹⁷, K. Yoneda⁵, L. Zanetti¹, J. Zenihiro^{5,25} &

Ab initio NCGSM calculations of multineutron systems

The History of Tetraneutron

- ✓ 2016 Expt : *Kisamori et al.*, *PRL 116*, 044006 (2016)
- ✓ 2016 NCSM: A. M. Shirokov, et al, PRL 117, 182502 (2016)
- ✓ 2017 QMC : S. Gandofi, et al., PRL 118, 232501(2017)
- ✓ 2018 NCSM : A. M. Shirokov, et al AIP Conf. proc 020038 (2018)
- ✓ 2019 NCSM : A. M. Shirokov Presentation in Nanjing@China 2019
- ✓ 2019 NCGSM : J. G. Li, N. Michel, B. S. Hu, W. Zuo, and F. R. Xu*, Phys. Rev. C 100, 054313 (2019)
- ✓ 2022 Expt : M. Duer et al. Nature 606, pages678– 682 (2022)

A = 4 (⁴H, ⁴He and ⁴Li) nuclear systems

- ✓⁴Li, ⁴He and ⁴H, all the states, except the ground state of ⁴He, are unbound bearing broad widths.
- ✓ The experimental energies and widths of the ground state of ⁴H and ⁴Li are either not very conclusive or even contraction.

✓ The T = 1 isospin multiplet states: the ground states of ⁴Li and ⁴H, and the excietd state of ⁴He → Isospin symmetry breaking

Page 17/21

Energy levels of light nuclei A =4 D.R. Tilley et al. Nucl. Phys. A541 (1992) 1-104

Ab initio NCGSM calculations of multineutron systems

J.G. Li, N. Michel, W. Zuo and F.R. Xu*, Phys. Rev. C 104, 024319 (2021)

Ab initio NCGSM calculations of multineutron systems

Ab initio NCGSM calculation of ⁴Li

Coulomb force (long-range) need to be well treated.

Page 19/21

Er ~ 2.23-2.70 MeV Γ ~ 1881-1972 keV

J.G. Li, N. Michel, W. Zuo and F.R. Xu*, Phys. Rev. C 104, 024319 (2021)

Ab initio NCGSM calculations of multineutron systems

A = 4 (⁴H, ⁴He and ⁴Li) T = 1 state

- ✓ Comparing the calculated spectra of the A = 4 systems, the ground states
 ⁴Li (T=1), ⁴H (T=1) (2- and 1-) with the ground state of ⁴He (T = 0) and 2⁻ (T=1) excited states.
- ✓ The isospin breaking is mainly caused by the Coulomb force.
- ✓ The energies and widths are both different due to the isospin breaking.
- ✓ The splitting of the T =2 isobaric triplet states.

J.G. Li, N. Michel, W. Zuo and F.R. Xu*, Phys. Rev. C 104, 024319 (2021)

Summary

- 1. The Energy and Width of the Multi-neutron systems (Trineutron and Tetraneutron) are calculated with *ab initio* no-core Gamow shell model (NCGSM).
 - ✓ The calculated Energy and Width of the Tetraneutron in NCGSM are both close to the recent experimental data (*Nature 606, 678 (2022)*).
 - ✓ The energy and width of Trineutron are both smaller than Tetraneutron in our NCGSM, suggesting that Trineutron would be more possible to be observed than Tetraneutron.
- 2. The resonant $T = 1 J^{\pi} = 2^{-}$ isobaric triplet states of A = 4 nuclei (⁴H, ⁴He and ⁴Li) are investigated with NCGSM.

✓ More precise experimental measurements are urgently needed.

Thank you for your attention