第一届粤港澳核物理会议, 2022年7月2-5日

重离子碰撞中超核形成研究

冯兆庆

华南理工大学物理与光电学院

Email: fengzhq@scut.edu.cn

110 - and the state

美直理ノ大学

报告内容

> 华南理工大学核物理学科介绍

> 奇异性核物理研究现状

▶ 重离子碰撞中奇异粒子产生

▶ 原子核碎裂反应和超核形成

华南理工大学地处广州,是直属教育部的全 国重点大学, 校园分为五山校区、大学城校 区和广州国际校区,是首届"全国文明校园" 获得单位。学校办学源远流长,最早可溯源 至1918年成立的广东省立第一甲种工业学校 (史称"红色甲工");正式组建于1952年 全国高等院校调整时期,为新中国"四大工 学院"之一;1960年成为全国重点大学; 1981年经国务院批准为首批博士和硕士学位 授予单位: 1993年在全国高校首开部省共建 之先河; 1995年进入"211工程"行列: 2001年进入"985工程"行列: 2017年进入 "双一流"建设A类高校行列,2020年进入 上海软科"世界大学学术排名"前200强。

华南理工大学物理与光电学院现有物理学一级学科和物理电子 学二级学科2个博士点及博士后科研流动站。物理学学科为广州市 重点学科,自2011年以来一直位列**ESI全球排名前1%。**学院具备 了从本科、硕士、博士到博士后一条完整的人才培养链,设有应 用物理学、光电信息科学与工程2个本科专业(全部为国家级一流 本科专业建设点),并在**理论物理、凝聚态物理、光学、声学、** 物理电子学等5个专业招收硕士、博士研究生和博士后研究人员, 现有全日制在校本科生594人、硕士生156人、博士生66人。 现有教职工108人,其中专任教师79人。拥有"双聘院士"1 人,长江学者特聘教授1人,国家杰出青年科学基金获得者2人, 国家优秀青年科学基金获得者2人,海外高层次人才1人,入选国 家重大人才工程2人,教育部新世纪优秀人才计划1人,广东省珠 江学者特聘教授2人,广东省杰出青年科学基金获得者5人。

理论物理团队人员概况:本团队现有教授3人,
副教授3人,T.T助理教授2名,博士后3人,博
士、硕士研究生约20人。
研究方向:原子核物理、重离子碰撞物理、致
密星物理、引力物理、黑洞物理、生物物理
理论物理学科:近3年来发表SCI论文30余篇,
主持国家自然科学基金项目,广东省基础与应
用基础研究项目等10余项。理论物理学科入选
广东省"珠江学者"设岗学科。
原子核物理方向:重离子碰撞物理、超核物理、
超重原子核形成、核裂变、致密物质性质、短
程关联、从头计算等。

二、奇异性核物理现状介绍

◆强子的内部结构

Normal meson

- ◆核子和核子共振态:八(十)重态重子
- ◆介子八重态: 矢量介子和赝标量介子
- ◆奇异粒子(含s夸克)主要指介子K(K⁰, K⁺)和
 K̄(K⁰, K⁻),超子Λ、Σ、Ξ和Ω
- ◆含有奇异粒子的原子核─超核

奇异粒子产生:

- ▶ 重离子碰撞
- ➤ 强子(质子,反质子,介子)引
 起的核反应

p

- ▶ 高能电子轰击原子核
- ▶ 光核反应

nucleus $\xrightarrow{}$

1. 超核实验观测和进展

1953年波兰物理学家M. Danysz和J. Pniewski 在宇宙线乳胶实验中首次发现Λ超核

利用 (K⁻, K⁺) 产生_EX超核实验观测 Kazuma Nakazawa et al, J. Phys.: Conf. Ser. 569 (2014) 012082

Hypernuclide ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H measured by STAR Collaboration (Phys. Rev. Lett. 128, 202301 (2022))

重离子碰撞产生超核的优势

- 1. 极端丰中子或丰质子超核产生和谱学性质
- 2. 奇特超核产生(s=-2) _{AA}X和_EX
- 3. 核物质中Λ-Λ和Ξ-N相互作用

PHYSICAL REVIEW C 102, 044002 (2020)

Observation of a $\overline{K}NN$ bound state in the ³He(K^- , Λp)n reaction

H. Tamura, Prog. Theor. Exp. Phys. (2012) 02B012

2. 超核结构理论研究

Emiko Hiyama and Kazuma Nakazawa, Annu. Rev. Nucl. Part. Sci. 68, 131-159 (2018)
T. T. Sun, E. Hiyama, H. Sagawa, H.-J. Schulze, and J. Meng, Phys. Rev. C 94, 064319 (2016)
W.-Y. Li, J.-W. Cui, X.-R. Zhou, Phys. Rev. C 97, 034302 (2018)
Yu-Ting Rong, Pengwei Zhao, and Shan-Gui Zhou, Phys. Lett. B 807 135533 (2020)

3. 中高能重离子碰撞产生超核理论研究一统计理论

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Physics Letters B 697 (2011) 203–207

Pb+Pb

N. Buyukcizmeci, R. Ogul, A. S. Botvina, M. Bleicher, Phys. Scr. 95 075311 (2020)

Statistical multifragmentation model (SMM)

₩ ※ 通 款 2018年 第 63 卷 第 8 期: 735~744

《中国科学》杂志衬

中高能重离子碰撞中奇异粒子产生和超核形成 机制

10⁻⁴∟ 0.0

A.S. Botvina, J. Steinheimer, E.Bratkovskaya et al., Physics Letters B 742 (2015)7-14

4. 中高能重离子碰撞产生超核理论研究方法

输运理论+并合模型

J. Aichelin, E. Bratkovskaya, A. Le Fèvre et al., Physical Review C 101, 044905 (2020) A. Le Fèvre, J. Aichelin, C. Hartnack and Y. Leifels 100, Physical Review C 034904 (2019)

⁶Li+¹²C@2A GeV

冯兆庆 中国科学院近代物理研究所,兰州 730000 E-mail: fenozho@imneas.ac.cr

0.3

0.6 E_{kin} (GeV) 14

0.9

5. 致密物质中超子成分的影响

S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nuclear Physics A 881, 62 (2012) W. Z. Jiang, R. Y. Yang, and D. R. Zhang, Phys. Rev. C 87, 064314 (2013).

惠州强流重离子加速器(2018年12月开建) HIAF(Migh-Intensity Heavy Ion Accelerator Facility)

~ ~ ~ ~ /			
	lons	Energy	Intensity
SECR	238U35+	14 keV/u	0.05 <mark>-0.1</mark> pmA
iLinac	238U35+	²³⁸ U ³⁵⁺ 17 MeV/u	
FRing	²³⁸ U ³⁵⁺	0.35 GeV/u	~2.0×10 ¹¹ ppp
BRing	²³⁸ U ³⁵⁺	1.0 GeV/u	~1.0×10 ¹² ppp
	238U92+	3.8 GeV/u	~5.0×10 ¹¹ ppp
SRing	RIBs: neutron-rich, proton-rich	0.84 GeV/u(A/q=3)	~10 ⁹⁻¹⁰ ppp
	Fully stripped heavy ions H-like, He-like heavy ions	0.8 GeV/u(²³⁸ U ⁹²⁺)	~10 ¹¹⁻¹² ppp

Provided by Jian-Cheng Yang

三、量子分子动力学模型 (LQMD)

Nuclear dynamics from 5 MeV/nucleon – 10 GeV/nucleon for HICs, antiproton (proton, π , K, etc)

- Dynamics of low-energy heavy-ion collisions (dynamical interaction potential, barrier distribution, neck dynamics, fusion/caption excitation functions etc)
- Isospin physics at intermediate energies (constraining nuclear symmetry energy at sub- and suprasaturation densities in HICs and probing isospin splitting of nucleon effective mass from HICs)
- In-medium properties of hadrons in dense nuclear matter from heavy-ion
 collisions (extracting optical potentials, i.e., Δ(1232), N*(1440), N*(1535)), hyperons (Λ,Σ,Ξ,Ω) and mesons (π,K,η,ρ,ω,φ...), hypernucleus dynamics)
- **Hadron (antiproton, proton, π[±], K[±]) induced reactions** (hypernucleus production, e.g., $\Lambda(\Sigma)X$, ΛΛX, ΞX, $\overline{\Lambda}X(S=1)$, in-medium modifications of hadrons, cold QGP)

1. Particle production channels in the LQMD model

 π and resonances (Δ (1232), N*(1440), N*(1535), ...) production:

 $NN \leftrightarrow N\Delta, NN \leftrightarrow NN^*, NN \leftrightarrow \Delta\Delta, \Delta \leftrightarrow N\pi,$ $N^* \leftrightarrow N\pi, NN \leftrightarrow NN\pi(s - state), N^*(1535) \leftrightarrow N\eta$

Collisions between resonances, NN* \leftrightarrow N Δ , NN* \leftrightarrow NN*

Strangeness channels:

$$\begin{array}{l} BB \rightarrow BYK, BB \rightarrow BBK\overline{K}, B\pi(\eta) \rightarrow YK, YK \rightarrow B\pi, \\ B\pi \rightarrow NK\overline{K}, Y\pi \rightarrow B\overline{K}, \quad B\overline{K} \rightarrow Y\pi, \quad YN \rightarrow \overline{K}NN, \\ BB \rightarrow B\Xi KK, \overline{K}B \leftrightarrow K\Xi, YY \leftrightarrow N\Xi, \overline{K}Y \leftrightarrow \pi\Xi. \end{array}$$

Reaction channels with antiproton:

$$\overline{p}N \to \overline{N}N, \ \overline{N}N \to \overline{N}N, \ \overline{N}N \to \overline{B}B, \ \overline{N}N \to \overline{Y}Y$$

$$\overline{N}N \to \text{annihilation}(\pi, \eta, \rho, \omega, K, \overline{K}, K^*, \overline{K}^*, \phi)$$

Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992))

The **PYTHIA** and **FRITIOF** code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies

2. Mean-field potentials for hyperons and antiprotons in nuclear medium

A factor ξ is introduced in evaluating self-energies of the antinucleon, e.g., $\xi = 0.25$ for $V_{\bar{N}N} = -160$ MeV at $\rho = \rho_0$

$$H_M = \sum_{i=1}^{N_M} \left(V_i^{\text{Coul}} + \omega(\mathbf{p}_i, \rho_i) \right) \quad \omega(\mathbf{p}_i, \rho_i) = \sqrt{\left(m_H + \Sigma_S^H \right)^2 + \mathbf{p}_i^2} + \Sigma_V^H \quad V_{opt}(\mathbf{p}, \rho) = \omega(\mathbf{p}, \rho) - \sqrt{\mathbf{p}^2 + m^2}$$

Ding-Chang Zhang, Hui-Gan Cheng and Zhao-Qing Feng. *Chinese Physics Letters* 38 (2021) 092501. (arXiv: 2107.00277, editor's suggestion)

$$V_{\text{opt}}^{\Sigma}(p_i,\rho_i) = V_0(\rho_i/\rho_0)^{\gamma_{\text{s}}} + V_1(\rho_n - \rho_p)t_{\Sigma}\rho_i^{\gamma_{\text{s}}-1}/\rho_0^{\gamma_{\text{s}}} + C_{\text{mom}}\rho_i\ln(\epsilon p_i^2 + 1)$$

3. Strangeness production in heavy-ion collisions

Phys. Rev. C 82 (2010) 057901; Phys. Rev. C 87, 064605 (2013); Nuclear PhysicsA919(2013)32-45

The K /K ratio in collisions of ${}^{12}C + {}^{12}C$ at 1.8A GeV and protons on ${}^{12}C$ and ${}^{197}Au$ with 2.5 GeV

22

中高能重离子碰撞原子核碎裂反应和超核形成

Physics Reports 510 (2012) 119-200

Physics Reports 512 (2012) 1-124

Strangeness production close to the threshold in proton-nucleus and heavy-ion collisions

Christoph Hartnack^a, Helmut Oeschler^{b,*}, Yvonne Leifels^c, Elena L. Bratkovskaya^{d,e}, Jörg Aichelin^a

Available online at www.sciencedirect.com SCIENCE DIRECT.

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 56 (2006) 1-103 www.elsevier.com/locate/ppnp

Review

Kaon production in heavy ion reactions at intermediate energies

Christian Fuchs*

Institut für Theoretische Physik der Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Transport-theoretical description of nuclear reactions

O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A.B. Larionov¹, T. Leitner, J. Weil, U. Mosel* Institut für Theoretische Physik, Universität Giessen, Germany

Available online at www.sciencedirect.com SCIENCE DIRECT*

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 53 (2004) 225-237

www.elsevier.com/locate/ppnp

Review

Strangeness dynamics in relativistic nucleus-nucleus collisions

E.L. Bratkovskaya^a, M. Bleicher^a, W. Cassing^{b,*}, M. van Leeuwen^{c,d}, M. Reiter^a, S. Soff^a, H. Stöcker^a, H. Weber^a

1. 费米能区(10A-100A MeV)重离子碰撞中的同位旋效应

P. Russotto et al., PRC 91, 014610 (2015)

Experiments: INDRA (GANIL), CHIMERA (LNS), NSCL (MSU) SSC (HIRFL) ...

密度演化等高图

¹⁹⁷Au+¹⁹⁷Au 碰撞中碎裂分布 (Phys. Rev. C 82, 044615 (2010); 94, 014609 (2016), Chin. Phys. C 41 (2017) 104104)

2. 趨核碎片构造和动力学分析

1) Classical coalescence approach in phase space for nuclides of Z>2 combined with the GEMINI decay code (minimum spanning tree (MST) procedure) $|r_i - r_j| \le 3 \text{ fm}, |r_i - r_\gamma| \le 4.5 \text{ fm}, |p_i - p_j| \le 0.3 \text{ GeV/c}$

Γ (MeV)

C. Samanta et al, J. Phys. G: Nucl. Part. Phys. 32 (2006) 363

Excitation energy $E^*(Z_{\nu}, N_{\nu}, nY)$ = $E_B(Z_{\nu}, N_{\nu}, nY) - E_{LD}(Z_{\nu}, N_{\nu}nY)$ **The decay of excited hypernucleum**

described by the GEMINI code!

Binding energy: $E_B(Z_i, N_i) = \sum_j \sqrt{p_j^2 + m_j^2} - m_j$ **energy** $E^*(Z_{ij}, N_{ij}, nY)$ $+ \frac{1}{2} \sum_{j,k,k \neq j} \int f_j(\mathbf{r}, \mathbf{p}, t) f_k(\mathbf{r}', \mathbf{p}', t)$

 $\times f_l(\mathbf{r}'', \mathbf{p}'', t)v(\mathbf{r}, \mathbf{r}', \mathbf{r}'', \mathbf{p}, \mathbf{p}', \mathbf{p}'')$ $\times d\mathbf{r} d\mathbf{r}' d\mathbf{r}'' d\mathbf{p} d\mathbf{p}' d\mathbf{p}'',$

Influence of the statistical decay and hyperon-nucleon potential on the hyperfragment production induced by proton, K- and antiproton (Physical Review C 101, 064601 (2020); 101, 014605 (2020); 101, 064601 (2020))

2) Wigner density approach for Z \leq 2

R. Mattiello et al., Phys. Rev. C 55, 1443 (1997) $\frac{dN_M}{d^3P} = G_M \binom{A}{M} \binom{M}{Z} \frac{1}{A^M} \int \prod_{i=1}^Z f_p(\mathbf{r}_i, \mathbf{p}_i) \prod_{i=Z+1}^M f_n(\mathbf{r}_i, \mathbf{p}_i)$ $\times \rho^W(\mathbf{r}_{k_1}, \mathbf{p}_{k_1}, ..., \mathbf{r}_{k_{M-1}}, \mathbf{p}_{k_{M-1}})$ $\delta(\mathbf{P} - (\mathbf{p}_1 + ... + \mathbf{p}_M)) d\mathbf{r}_1 d\mathbf{p}_1 ... d\mathbf{r}_M d\mathbf{p}_M$

Cal: Eur. Phys. J. A, 57 (2021) 18; FOPI data, Nucl. Phys. A 876, 1 (2012)

Multi-strangeness hypernuclide production

H.G. Cheng, Z. Q. Feng, Phys. Lett. B 824 (2022) 136849

TABLE I. Comparison between cross sections of double lamda hypernuclei calculated with $r_0 = 3.5$ fm for Λ in ¹⁹⁷Au + ¹⁹⁷Au and ⁴⁰Ca + ⁴⁰Ca collisions at 3A GeV

Hypernuclei	Cross sections (mb)				
	$^{197}Au + ^{197}Au$	40 Ca + 40 Ca			
$^{4}_{\Lambda\Lambda}\mathrm{H}$	$2.6 imes10^{-2}$	$1.0 imes 10^{-4}$			
$^4_{\Lambda\Lambda}\mathrm{He}$	$1.0 imes10^{-2}$	$\sim 10^{-5}$			
$^{5}_{\Lambda\Lambda}H$	$5.9 imes 10^{-3}$	$\sim 10^{-5}$			
$^{5}_{\Lambda\Lambda}$ He	$5.1 imes 10^{-3}$	$\sim 10^{-5}$			
$^{5}_{\Lambda\Lambda}$ Li	$1.4 imes 10^{-3}$	$\sim 10^{-6}$			
$^{6}_{\Lambda\Lambda}$ He	$2.2 imes10^{-3}$	$\sim 10^{-6}$			
$^{7}_{\Lambda\Lambda}\mathrm{He}$	$6.8 imes10^{-4}$	$\lesssim 10^{-6}$			

五、总结

	中高	能重离	子碰撞	童中奇异	粒子主	要是在碰挂	童高
重子	密区:	域产生	,可以	以提取高	密区域	时称能信。	息
	碰撞	区域产	生的走	舀子被"	旁观者'	'(旁观核	子)俘
获后	形成	超核,	轻质量	世超核可	以在类引	单、类靶利	市中心Np
快度	区域	产生,	重质量	世超核只	能在类引	单(靶)区均	或产生
	重离-	子碰撞	更可以产	生极端	丰中子/	'丰质子超	核、
多奇	·异性;	超核。	入射能	屹量4.25	5GeV/核-	子 ²⁰ Ne+ ¹² C	反应
可以	在HI/	AF上做	机超核研	开究测试	实验		
	问题	: 核子	核子	碰撞中沒	步及超子	的三体和	四体
碰撞	直接	产生的	」超核(轻质量、	高动量	、奇异性	, 如
nnΛ,	nnΛΛ,	5 H, 6 I	H)还没	有考虑!			

谢谢大家!